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ABSTRACT

Traditional information retrieval systems are primarily focused on finding topically-
relevant documents, which are descriptive of a particular query concept. However,
when working with sources such as collections of news articles, users frequently seek
not only those documents that describe a news event but also documents that ex-
plain the chain of events that could have contributed to the occurrence of that event.
These associations might be complex, involving a number of causal factors. Moti-
vated by this information need, we formulate the task of causal information retrieval.
First, we offer a comprehensive review of the existing literature on causality-related
research, explaining how the proposed task differs from standard retrieval problems.
Following this, we conduct empirical experiments to assess the effectiveness of pop-
ular existing retrieval methods to retrieve causally-relevant documents. Our findings
illustrate that conventional methods are not suitable for this task, highlighting that
causal information retrieval remains an open challenge that merits further research
and exploration. To the best of our knowledge, the study of causal information re-
trieval, especially the extraction of information indicating causality directly from the
documents, is a novel area of research. Consequently, there currently exists no off-the-
shelf benchmark dataset for evaluating such systems. This thesis contributes a new
dataset specifically tailored for causal information retrieval, which is made available

to the community to support further research.

Additionally, in this thesis, we contend that while causally relevant documents would
have partial term overlap with the ones that are topically relevant for a query, it is
anticipated that a substantial portion of these documents will employ a distinct set
of terms to describe various potential causes that could result in specific effects. To
address this issue, we propose an unsupervised feedback model to estimate a distri-
bution of terms that are relatively infrequent but are associated with high weights in
the topically-relevant distribution, indicating potential causal relevance. Our experi-
ments reveal that this feedback model proves to be significantly more effective than

conventional IR models and several other baseline heuristics related to causality.

As a further contribution of this thesis, we introduce a supervised approach to en-
hance retrieval effectiveness in the context of causality. The fundamental idea here is

to analyze input queries and estimate their specificity to the collection, enabling us to
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determine whether or not to apply feedback in order to retrieve more causally relevant
content towards top ranks. We introduce two such supervised query performance es-
timation models and demonstrate that these approaches yield significant performance
improvements on a range of benchmark IR datasets. The effectiveness of the proposed
query performance estimation models serves as motivation for the selective feedback
model for causal information extraction. We illustrate how the intermediate decision
of whether or not to apply query performance prediction ultimately results in an in-

crease in downstream effectiveness.
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CHAPTER

ONE

INTRODUCTION

Faced with any situation or event, it is a fundamental part of human nature
to ask ‘why?” and “‘when?’, as we attempt to understand the context in which
we find ourselves. The same can be said when we seek to analyze the com-
plex nature of events in modern society. For instance, we may want to find
out why was the UAE-Israel peace accord signed, for a potential analysis of
its consequences. In the existing literature, the study of cause-effect relations
has focused on analyzing the inter-relationships among different phenomena,
in terms of causes and their effects (Asghar, 2016), as humans often perceive
the present reality as a chain of causes and consequences. Sometimes these
associations are immediately evident to us, such as, seismic plate shift causes
earthquake. However, in other cases, these relations can be far more subtle
and complex, involving a combination of a number of causal factors that might
have led to an observed event, which in turn might have been caused by other
factors and so forth. Returning to the example of the UAE-Israel peace accord,
while the immediate causes may include factors like Israel’s settlement plan
or Trump’s diplomatic strategy (BBC Middle East editor, 2020), there may also
be deeper-rooted causes dating back further in history, such as the pursuit of
global recognition and efforts to improve relations with the Middle East (Frank
Gardner, 2020).

Generally speaking, the study of cause-effect relationship has a long history
mostly in terms of its psychological and cognitive aspect (Koriat et al., 2006;
Kuo et al., 2019), where the concept of cause-and-effect associations is estab-
lished as fundamental to recognizing various facts and phenomena. Human
psychology refers a cause-effect relationship as one factor (the cause) triggers
an outcome (the effect). For example, a student performed well in an exam (ef-
fect) because she worked hard throughout the course (cause). Now the crucial

step is to establish the causality as far as human psychology is concerned, i.e.,




to demonstrate an association between the cause and its effect. Psychologists
usually start by asking a simple question: ‘Is there an association between de-
pendent (effect) and independent (cause) variables?’. In contrast, the goal of
this research is to study fact-based causality, where the causation is explored
from an information retrieval (IR) perspective that involves retrieving poten-
tial triggering list of causes in response to an user’s query which is an expres-

sion of an event occurred in the past.

From an IR perspective, these cause-and-effect inquiries can be viewed as anal-
ogous to the interactions between a user and a search engine, where the user
might input an effect as a query to the search system and expect to receive
a collection of triggering causes in response. Unlike traditional search re-
sponses (i.e., capturing term overlaps between query and documents), find-
ing this specific type of cause-effect information might be challenging for a
standard search engine. Indeed, the research literature emphasizes that, in
most situations, there are no definitive rules around how cause-effect rela-
tions should be structured (Hashimoto et al., 2015; Riaz & Girju, 2014). When
dealing with intricate causal relationships, such as news events and their
consequences, explicitly enumerating a list of causes (in the form of short
text segments) often becomes difficult. This is primarily because, in
most instances, the causes leading to an event involve subjectivity, and
these causal factors are spread across a number of multi-topic documents
(Kiciman, 2018; Kiciman & Thelin, 2018; Datta et al., 2020).

As noted above, traditional retrieval systems typically concentrate on match-
ing terms between documents and a user query. However, such techniques
may not be adequate for the situation where a user’s search is intended to re-
veal the causes which led to a specific event. In this context, a user might con-
sider a straightforward approach, such as including terms like ‘why’, “causes’
or ‘reasons’ as additional query terms. However, this approach often proves
ineffective in practice for identifying causal links as the nature of causal rele-
vance is likely to be different from that of its topical relevance. Later in this
thesis, we further detail how the nature of causal relevance differs from that of
traditional topical relevance (see Chapter 3).

In this thesis, our exploration of causality highlights that while causally rele-
vant documents may share some term overlap with those topically relevant to
a query, it is expected that most of these documents will employ a different set
of terms to describe various potential causes and their effects. This is an aspect

that traditional search systems typically struggle to address. Therefore, to ad-




dress this gap in the IR literature, we aim to investigate the novel problem of
causal search, where user’s search intention is exclusively to know ‘why?” and

proposes potential solutions to mitigate the gap.

1.1 Motivation

Finding causal information involves multiple query reformulations. In tra-
ditional search systems, a user is required to specify the information need in
the form of a search query. In some cases, these queries are clear reflections
of the user’s requirements. However, more often, human-generated queries
are not particularly specific in terms of the user’s search intent. Based on the
input query, an IR system retrieves the top-most similar documents, where
the similarity between a document and a query is measured with the help of
an underlying scoring function of a retrieval model, such as BM25 and LM-
JM. (Hiemstra, 2001; Zhai & Lafferty, 2001; Ponte & Croft, 1998; Robertson &
Zaragoza, 2009). The user then typically inspects the retrieved documents,

seeking instances which satisfy their information need.

It is important to note that traditional IR systems do not take a user’s search
intent into account while retrieving search results for the user. Therefore, the
usefulness of the output of an ad-hoc IR system, in the form of a ranked list of
documents, is likely to be limited in situations when either: i) decision makers
need to formulate policies to mitigate a current event that requires attention
(e.g. drop in the value of British pound); ii) policy-making regarding societal
benefits (e.g. formulating government policies to reduce housing crisis by an-
alyzing the most likely causes). In such situations, the user of a traditional
search system is required to carefully analyze the relevant documents (likely
to describe the main event expressed in the query itself) and most likely will
have to reformulate queries in order to retrieve documents related to the po-

tential causes leading to the (query) event.

Subtle nature of cause-effect relations in news articles. There is a long his-
tory of research on finding causal relations in a form of textual entailment,
where cause-effect relations hold clear conjunctives (for example, ‘because’,
‘due to’, ‘leads to” and so on) (Asghar, 2016). In contrast, we are interested
in cases where cause-effect relations are rather complex without having any
direct associations, as is observed for news articles (refer back to the example




of UAE-Israel peace accord signed at the beginning of this chapter). For news
articles, an important point to note is that the causes leading to an event are
rather often subtle in nature instead of being explicit (Datta et al., 2020). More-
over, more often than not, an event is triggered by a series of causes spread
over a considerable period of time (Datta et al., 2020). Consequently, it is of-
ten difficult to find news documents that would ‘single out’ the cause of an
event to be one specific event in the past. This in turn means that making the
initial query more specific by adding cause-related keywords, such as “‘pound
drop causes’ or ‘pound drop reasons’ etc., and then using a traditional IR sys-
tem is unlikely to retrieve relevant information, because such information is
not explicitly reported in news articles. However, such information may be
discovered by analyzing a number of documents and associating the latent re-
lationships between their terms. Therefore, the user of a traditional IR system
must spend considerable effort in reformulating queries in order to retrieve

causally relevant documents.

User needs prior knowledge to capture and verify causal relevance. To il-
lustrate the problem, consider a scenario where a user would like to find po-
tential causes leading to the event ‘drop of the British pound’, without having
prior knowledge of the possible reasons. Thus, the search intention is to ex-
plore, rather than to recall or confirm previously known information. In this sit-
uation, the user first needs to submit a query related to the event (e.g. “pound
value drop’). The documents retrieved at the top ranks by a traditional search
systems will be related to the topic itself, since these documents are expected to
contain terms that are representative of the relevance to the information need
(e.g. recent news reporting the drop in the value of the pound). Since such
top-ranked documents are unlikely to be causally relevant to the information
need (i.e., they will not list the likely causes leading to the query event), the
user must then manually reformulate their query by including terms that are
representative of the likely causes (e.g. concepts such as ‘Brexit delay” or ‘ne-
gotiation difficulties between EU and UK’). However, this becomes infeasible
when the user is unaware of these causes in advance.

Recent Al tools may not be adequate for causality. With the fast growing
availability of Al tools, such as ChatGPT' from OpenAl, a potential ques-
tion might arise around whether finding information via ranked lists of doc-

https://openai.com/blog/chatgpt
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uments still relevant in today’s world of ChatGPT and its successors. These
instruction-tuned large language models are typically trained on huge datasets
incorporating large language models (Zhao et al., 2023) via zero shot or few
shot learning. Our understanding of the precise logic or depth of knowledge
underlying the responses generated by these models is limited. Consequently,
their responses can be superficial, particularly in cases like ours involving sig-
nificant subjectivity, and where the association between the query (i.e., any
event) and the answer (i.e., prevalent causes of that event) is not explicit. In
the worst case, users might encounter ‘hallucinations” in the responses gen-
erated by these bots (Guo et al., 2023). Therefore, Al-generated answers in
the context of causality will likely require thorough validation to prevent such
hallucinations.

Driven by this motivation, this thesis focuses on creating effective retrieval
models that support causality-based relevance. These models aim to go be-
yond traditional topical relevance, reducing the need for manual query re-
formulation and providing accurate information in response to users’ causal
information needs. Broadly speaking, we investigate the existing gap in the
information retrieval literature in terms of causal IR as outlined earlier, by ad-
dressing a number of associated research questions and challenges, as detailed
in Section 1.2. Our key objective is to develop an end-to-end causal retrieval
system, (Causal Information Retrieval System), to mitigate this gap, thereby
exploring a novel direction of research which augments a classic ranked list of

topically-relevant search results with a list of causally-relevant results.

1.2 Research Questions and Key Contributions

The central research challenge this thesis seeks to address is how to identify
and extract segments of text from a document that indicate potential causes in
response to a user query, which is formulated based on an event that could
have a series of underlying prevalent causes. Particularly, this thesis con-
tributes to the novel field of causal IR research by developing retrieval models
using both unsupervised and supervised approaches that focus primarily on
causality-based relevance. The specific research questions addressed in the
respective chapters of this thesis are outlined in the following sections.




1.2.1 Standard Information Retrieval and Causality

Traditional information retrieval systems are primarily focused on finding
topically-relevant documents, which are descriptive of a particular query con-
cept. Such systems mainly concentrate on matching terms between documents
and a user query, applying topical relevance to meet the user’s information need.
However, this might not address situations in which a user’s search is intended
to uncover the original causes that led to a specific event. More specifically,
when dealing with sources such as collections of news articles, users often
seek to identify not only documents that depict a news event but also those
that elucidate the sequence of events that could have potentially culminated
in the occurrence of that event. These connections can be intricate, encompass-
ing a multitude of causal factors.

In the existing literature, the exploration of causal relations occurs either at
the sentence level or within a single document (Asghar, 2016). Some methods
incorporate prior knowledge about causal events, while others rely on prede-
fined lexical, syntactic, or morphological relationships. However, these tech-
niques are insufficient when it comes to addressing the nuanced causes and
effects present within extensive document collections, a gap that we aim to
bridge through the use of retrieval models. This thesis investigates this signifi-
cant gap in the IR literature, and thus we formulate our first research question

as follows.

RQ-1: Is a traditional search system sufficient for identifying causally-
relevant information, or is there a need to introduce a new research

paradigm, namely, causal information retrieval?

Contributions. Chapter 3 and 4 are based on our investigations and obser-

vations with respect to RQ-1. The key contributions here are as follows:

¢ We create an initial pilot dataset for the novel causal document retrieval
task that enumerates a list of cause indicative documents in response to

an user’s query.

* A set of rigorous experiments are conducted on the pilot dataset, illus-
trating that standard retrieval models do not suffice causality because of
the subtle nature of causally-relevant documents with respect to its query

events.




* We propose a new recursive causal retrieval framework design to per-
form in-depth exploration to find a chain of likely causes for a query.

* We introduce a newly-annotated, fine-grained dataset specifically de-
signed to meet the needs of the retrieval framework, namely, identifying
precise pieces of information within causally relevant documents.

1.2.2 Unsupervised Causal Retrieval

To answer RQ-1, in Chapter 3 we empirically demonstrate that standard IR
models are inadequate for the task of causal retrieval. Therefore, it becomes
clear that we need to introduce a new IR paradigm to capture the list of causes
behind the input query. Ideally, a causal retrieval system should identify a
series of triggering causes, likely distributed across multiple topically-relevant
documents, and present them to the user as short text snippets. Furthermore,
certain text segments from the list of triggering causes may have further causal
needs that warrant further exploration.

Referring back to the example of ‘UAE-Israel peace accord signed’, the imme-
diate causal factors might include Israel’s settlement plan or Trump’s diplo-
matic strategy (BBC Middle East editor, 2020). However, upon deeper exami-
nation of the antecedent causes of Israel’s settlement plan, we may identify ad-
ditional prominent factors, such as acquiring global recognition and improv-
ing relations with the Middle East. Thus, navigational search activities play
an important role in uncovering causal relationships, where the success of the
process is solely dependent on the quality of the initial set of retrieved results.
This is because a collection of relevant text segments is essential in guiding a
user towards uncovering more meaningful effect events and their underlying

causes.

In answer to the RQ-1, we empirically show that causal and topical docu-
ments share a partial term overlap, such that, in almost all the cases, infre-
quent terms occurring in the pseudo-relevant document set are actually the
carrier of causal information. Therefore, a simple yet effective approach is to
expand queries with a list of potential causally-relevant terms. Here the causal
indicative terms are to be captured by using simple heuristics applied to the
collection. One effective way of expanding queries is to apply relevance feed-
back (Lavrenko & Croft, 2001) which assigns a probability score to the con-
stituent terms of the top result list in an unsupervised way. Therefore, our
first causality-based IR model is formalized based on the idea of traditional
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relevance feedback. Furthermore, another reason for starting our initial inves-
tigation in an unsupervised manner is that the pilot dataset that we introduce
later in Chapter 2 is unlikely to be adequate for most of the data-hungry neural
re-rankers. Keeping this in mind, we formulate our second research question

as below.

RQ-2: Can we develop a system that, without any supervision, generates
a list of potential causes, represented as short text segments, in response

to any given causal query?

Contributions. Building on the foundations laid in previous chapters, Chap-
ter 5 addresses RQ-2 as follows:

¢ We propose an unsupervised feedback model to estimate a distribution
of terms which are relatively infrequent but associated with high weights

in the topically relevant distribution, leading to potential causal relevance.

¢ Through detailed experiments on both ad-hoc IR datasets and our newly-
created causal dataset, we show that this feedback model is substantially
more effective than traditional IR models and several other causality

heuristic baselines.

1.2.3 Causal Retrieval Model with Supervision

Broadly speaking, any standard causal retrieval system can be considered as
a black box which takes an event in the form of a query as input and yields
a set of causes (i.e., text segments) in turn that have eventually led to the in-
put event. However, the question arises, how does that black box distinguish
an effect event that may have some causal links, given any piece of text as
input? More specifically, even before finding out the list of text segments car-
rying causal information for any given query, the first challenge appears to be
estimating how likely a given input query to contain an potential effect. In
other words, for any standard causal retrieval system, we must decide if the
input query is adequate to retrieve potential causally relevant documents from
the collection, or might need reformulations to capture the causal trail. Specifi-
cally, to estimate the likelihood of an input query to be a causal one, a standard
causal retrieval framework is expected to first make predictions on the perfor-
mance of the query, and based on that prediction (i.e., if the query is specific to
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the collection or not) the query must be re-framed. It bears repeating that the
focus of this thesis is not on straightforward cause-effect relationships, like a
seismic plate shift causing an earthquake or an ice jam leading to a flood. In-
stead, we direct our research to explore chains of cause-effect relations in news
stories where the causal information tends to be complex and potentially open

to interpretation.

For instance, the information need underlying the two queries Abraham
Peace Accord” and "Abraham Peace Accord signed” are likely to differ. The
first query is highly specific, seeking documents pertaining directly to the con-
tents of the treaty itself (e.g. the date of the event, the entities involved, and the
specific agreements). This, however, falls outside the scope of our research. In
contrast, the second query aims to reveal the predominant causes that lead to
the agreement, such as Trump’s diplomatic strategy, Israel’s settlement plan, or
efforts to reduce Israel’s regional isolation. Our research centrally focuses on
catering to this kind of causal query or event. Therefore, from the perspective
of causal IR, it becomes important to assess the specificity of any given input
query. Specifically, we must estimate whether the original query, in its current
form, can adequately capture the underlying causal factors or if it necessitates

additional information to uncover the causal trail.

In addressing RQ-2, we have developed a causal information retrieval model
based on relevance feedback, which employs the query expansion technique
without first assessing whether the original query captures causal relevance
in its existing form. Later in Chapter 5, we observe that this kind of blind
feedback approach often penalizes queries and introduces query-drifts by de-
viating it from the initial information need. Therefore, we revisit the concept
of selective feedback for improved retrieval effectiveness. Our intuition is that
a system will learn whether or not to apply feedback when it is trained with
some labeled samples with strong supervision. Hence, this consideration leads

us to formulate our third research question.

RQ-3: Can we develop a supervised decision-making pipeline capable of
determining when query reformulation is necessary in order to capture

causal relevance?

Contributions. Both Chapter 6 and 7 concentrate on developing the
decision-making system required to address RQ-3. The principal contribu-
tions of that work are listed below:




* We develop a data-driven end-to-end convolutional neural framework
designed to predict query specificity in ad-hoc retrieval.

* A novel end-to-end neural cross-encoder-based approach is proposed
that estimates the specificity of an input query, which is validated across
a variety of benchmark IR datasets.

¢ We propose a new deep-learning framework for the decision-making
pipeline that leverages the idea of our proposed data-driven convolu-

tional and cross-encoder-based query estimators.

* We demonstrate the effectiveness of the model on a comprehensive set of
experiments on standard benchmark datasets and our newly-proposed
causal dataset.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

¢ Chapter 2 provides a comprehensive literature review on causality-based
research to date, emphasizing how this PhD study differs from existing
literature in the field.

¢ Chapter 3 illustrates how the notion of causality differs from its topical
counterpart, with extensive experiments and analysis. Based on these

findings, we introduce a general framework for causal retrieval.

¢ In Chapter 4, we present a new dataset for the evaluation of causal re-
trieval models, with detailed information regarding the data annotation
process and characteristics of the dataset.

¢ In Chapter 5, we introduce a novel unsupervised relevance feedback-
based approach for causal information retrieval. We describe the end-
to-end architecture of the proposed model, highlighting its notable per-
formance on data with a focus on causality-focused data and offering a
thorough analysis of the model’s retrieval effectiveness.

¢ In Chapters 6 and 7, the goal is to enhance the retrieval effectiveness of
the original unsupervised model proposed in Chapter 5 through the in-
corporation of supervision. The central idea is to analyze input queries
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and gauge their specificity to the collection, determining whether feed-
back should be applied to capture a greater number of relevant docu-
ments while reducing query drift. Chapter 6 proposes two such super-
vised query estimation models and demonstrates their marked perfor-
mance across various benchmark IR datasets. Building on the effective-
ness of these query performance estimation models, Chapter 7 explores
an selective feedback model for causal information extraction. We de-
scribe the selective feedback pipeline in depth, demonstrating its supe-

rior retrieval effectiveness compared to the original unsupervised model.

Finally, Chapter 8 concludes the thesis, highlighting the main findings
and exploring potential directions for future research.
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CHAPTER

TWO

BACKGROUND

2.1 Introduction

The general notion of causality has been extensively studied from various per-
spectives in the natural language processing community (Hashimoto et al.,
2012, 2015; Asghar, 2016). For instance, causal inference typically involves
an entailment between a known set of effects and a set of possible causes. In
other words, the goal is to derive the genuine causes from a given set of ef-
fects. These methods have practical applications, such as in the medical do-

main, where they can be used to automatically simulate random control trials
(Austin, 2011).

Methods such as text classification have previously been applied for causal in-
ference (Wood-Doughty et al., 2018). Asghar (2016) provides a summary of ap-
proaches that use text mining to extract causes and effects. A number of exist-
ing approaches extract cause-effect patterns using lexical, syntactic, and more
recently, semantic relations (Blanco et al., 2008; Chang & Choi, 2005; Hashimoto
et al., 2014; Radinsky et al., 2012). These are primarily taken from either head-
lines or single sentences. The cause-effect pattern approach was extended by
Zhao et al. (2017), where a set of patterns were initially used to create a net-
work of causes and effects, and then a relational embedding method (similar
to TransE developed by Bordes et al. (2013)) was used to jointly embed causes
and effects.

The aforementioned studies are particularly relevant for finding explicitly-
mentioned causes. These are specified via typical patterns within a single sen-
tence, such as "X leads to Y’, where the system is provided with sufficient in-
formation to learn underlying cause-effect relations from these patterns, which

can used for future predictions. However, the notion of causality that we wish

12



to address in this thesis is more subtle and subjective. In our scenario, the
system also has limited information from which to learn or capture reliable
cause-effect patterns. As originally stated in Section 1.1, our focus will mostly
be on cases where there are no direct evidences of causality relations between

a query event and its causally-relevant precursors.

A key difference between our research and existing work is that we aim to
retrieve causal information in the form of document excerpts (note that it could
be the entire document in certain cases), the scale of which is typically much
larger than sentence-level causality, such as ‘heavy rain causes flood’. The work
by Kiciman (2018) and Kiciman & Thelin (2018) addresses causal inference in
IR, albeit in the reverse direction, where a query describes a cause and the
results provide a list of possible effects. The authors focused on social media
data and targeted potential future effects, while our work targets past causes

with a focus on news events.

All of the above underscores that our perspective on addressing the challenges
of Causal Information Retrieval is novel, and this research direction holds
promise for fulfilling real-world user information requirements. We are partic-
ularly interested in capturing document-level causal information, rather than
working at the sentence level. Next we provide a high-level overview of var-
ious existing approaches designed to capture cause-effect associations, which
helped us to frame the problem of causal information retrieval. We have com-
prehensively compared existing techniques and grouped them into seven dis-
tinct categories as follows to emphasize the novelty of our causality research
in this thesis.

2.2 Causal Relation Extraction

As deep neural architectures have gained popularity, the study of causation
has increasingly shifted towards understanding counterfactuals, exploring
questions like ‘'what might have happened under different circumstances?’
(e.g. ‘would I be more healthy if I had not smoked for the last two years?’).
However, traditional research on causality primarily focused on pinpointing
the semantic relations between a cause and its subsequent effect. For example,
some work concentrated on extracting relevant noun-verb associations or lexi-
cal patterns from texts (Riaz & Girju, 2014; Tanaka et al., 2012). Other studies

have leveraged cue phrases and word-pair probabilities to examine the causal
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dimensions within documents (Chang & Choi, 2006).

While sentence-level entailment (e.g. a statement such as ‘sedentary lifestyle
causes childhood obesity’) has been harnessed to capture causal characteristics
(Inui & Okumura, 2005), other authors have investigated the causal relations
between two queries (Sun et al., 2007), which eventually has lead to the idea of
using event pairs (Beamer & Girju, 2009). Studies have shown that, if we can
construct a map that connects an event in one query to another event in some
other query, then the Granger Causality Test! Granger (2001) can effectively
re-rank causal associations. This has lead to the idea of using event pairs. For
instance, Beamer & Girju (2009) introduced a measure ‘causal potential’, which
aimed to encapsulate the causality between temporally adjacent events, like,
wear — tailor (e.g. ‘wears a tailored jacket’). Later, Do et al. (2011) attempted
to identify causality within texts by predicting event causality, i.e causality
between event pairs, triggered by noun-noun, verb-verb or verb-noun pairs, and
with the help of discourse relations (e.g. “police arrested him” because ‘he killed

someone’).

A novel conceptual map that steers through different causal analysis problems
was presented in Lattimore & Ong (2018). Observations show that causal ef-
fect estimation for continuous variables are more complex than for discrete
random variables. Based on the assumption that correlation does not imply
causation, the authors introduced four schools of causality pertaining to three
fundamental aspects of causation (i.e association, intervention and counter-
factuals), as highlighted in Pearl & Mackenzie (2018). Modeling with Causal
Bayesian networks (by definition, a link y; — y; implies y; causes y;, i.e. an
intervention to change the value of y; might affect y;, but the reverse does not
apply), Counterfactuals, Structured equation model (by definition, it repre-
sents a model with NV variables that acts as a set of N simultaneous equations,
where each variable is a dependent variable in one equation. For causality,
it depicts causal assumptions about the associations between variables.) and
Granger causality inspired them to build a unified architecture that leverages

causal dimensions within sentences.

This thesis also focuses on studying the underlying relationships between
event pairs that are causally connected, i.e., our interest revolves around
one of the fundamental aspects of causation, ‘association” as explained in

!Granger causality is a way to investigate causality between two variables in a time series.
It provides a probabilistic account of causality by using empirical datasets to find patterns of
correlation.
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Pearl & Mackenzie (2018). In our case, the assumption is that for any effect
event embedded in the input query, might have a number of cause-effect pairs
spread across the collection. The main difference is that all the aforemen-
tioned approaches are concerned with sentential cause-effect relation extrac-
tion, whereas we investigate causality for a given query spanning across a

document collection.

2.3 Graph-based Approaches

Graphs can provide a convenient way to encode and visualize cause-effect re-
lations. Some authors have proposed a non-parametric graph-based frame-
work to trace causal inferences. For instance, Pearl (1995) showed that causal
diagrams can be constructed based on the assumptions of the in-domain causal
influences. The resulting causal graph can then be queried to produce mathe-
matical expressions for finding cause-effects for observed distributions to vali-
date if available suppositions are adequate for identifying causal effects or not.
This emphasizes that there must be a number of firm quantifying assumptions
beforehand, which is unlikely in our case as we assume that the user is not

aware of the causes of an event in advance.

Previous works have used Directed Acyclic Graphs (DAGs) to represent causal
relations (Dawid, 2010; Pearl & Paz, 2022), with a later shift focus to Bayesian
Networks (Zhang, 2008). Studies have shown that, with the help of proba-
bilistic causality (Suppes, 1970; Richard & Peter, 2008), links can be captured
between such causally connected concepts. In some cases this can be done
via Markov chain conditions (Richardson & Spirtes, 2000). Another method
employed a graphical approach, extracting causal associations by employing
causal Bayesian networks. These were represented as Ancestral Graphs, as
detailed by Zhang (2008). This approach aimed to tackle causal reasoning
challenges that arise when multiple equivalent classes of causal diagrams are
available from (partial) ancestral graphs. The authors modeled causality with
non-linear causal graphs where nonlinear effect of the causes and inner noise

effects are taken care of in graph-based approaches.

In other work, Rink et al. (2010) proposed using graphs to solve event-pair
causality relations as encoded in text (e.g. ‘we recognized the problem and took
care of it’). They extracted various graph patterns at the sentence level, taking
the form of subgraphs from each sentence-graph. These graph patterns were
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then employed as binary classifiers to distinguish between causes and effects.
In general, graph-based techniques have primarily focused on the extraction of
event pairs from text and the study of their patterns via probabilistic measures
which motivates us to come up with a recursive causal extraction model as de-
picted in the next chapter of this thesis (see Figure 3.3). For a given user input
query, the cause-effect pairs at each successive steps are likely to be considered

as a strongly connected nodes of a graph generated from a collection.

2.4 Causal Knowledge Bases

Research on causality that makes use of domain-independent knowledge was
first introduced in the late 1990s and continues today. As knowledge-based
causality developed gradually, researchers attempted to explore automatic
causal relation acquisition, specifically via common cause-effect propositions
(Kaplan & Berry-Rogghe, 1991). The goal here is to exploit semantic prop-
erty of predicates (Hashimoto et al., 2012) which efficiently find contradictory
pairs (e.g. ‘destroy cancer’ L ‘develop cancer’). Zhao et al. (2017) expanded
the knowledge-base pattern approach by initially using a set of patterns to
establish a network of causes and effects, forming the basis for a relational
embedding method.

Kaplan & Berry-Rogghe (1991) developed a knowledge-based causal relation
acquisition system, named TAKT, to explore the automatic understanding of
expository text. The system processes a set of propositions, represented as
causal chains of cause-event and effect-event from input text sentences, yield-
ing domain-independent causal knowledge. This technique handles some
common cause-effect propositions from text that could be used in specific cases

(e.g. ‘when a cloud forms the water vapor condenses into water”).

Furthermore, an automated system to learn expressions relating to cause-effect
correspondence was described by Kozareva (2012). By using bootstrapping
the authors developed a learning database that is capable of mapping causal
patterns like, {bacteria, worms, germs} to some effect patterns like, {diseases,
damage, contamination} from the web using a recursive pattern “*and virus
cause* . The cause-effect pattern approach was extended by Zhao et al. (2017),
where a set of patterns was initially used to create a network of causes and ef-
fects, and then a relational embedding method is used to jointly embed causes
and effects and thus system becomes well-versed with the domain knowledge.
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However, such an approach does not fit in cases where causally relevant doc-
uments do not share the same embedding space with the query as in our case.
In other words, the cases where the cause and effect events do not have any
direct relations rather share nuanced associations, such as, the association be-
tween ‘why was Brexit happened?” and the underlying effect of ‘dropping the
value of British Pound’. Chapter 3 conducts a thorough investigation around
how topical and causal document embeddings share a very small partial over-
lap and via detailed experiments and analysis we show that how the subtle
cause-effect relations make the task a challenging and novel one.

2.5 Document Classification

Causality has also been shown to be relevant in the context of document classi-
fication, where the relationship between features and classes is often complex.
Paul (2017) sought to answer the question of ‘which term features cause docu-
ments to have the class labels that they do?’, and developed a propensity score
matching technique for selecting important features. Conversely, if a term “hor-
rible’ is added to a movie review, it certainly points to a negative sentiment,

while the term ‘said” does not.

Work by Wood-Doughty et al. (2018) considered the causal inference task as a
classification problem, and by using logistic regression, they illustrated how
to analyze causality a variety of datasets. The authors took into account fac-
tors such as missing data and measurement errors, which often hinder down-
stream causal analysis. To facilitate causal inference, they explored methods
which can integrate text classifiers with the investigation of causal inference.
They designed their classification model to account for two key factors: miss-
ing data and measurement errors. Their approach highlighted how modeling

assumptions can introduce biases and obstacles to subsequent causal analysis.

In light of the concept of document classification via feature analysis, we for-
mulate our causal retrieval problem as a classification task and in line to this
we propose a causal document retrieval model that segregates the causal doc-
uments from that of its topical ones via analyzing term heuristics and features

extracted from the collection. We detail the model in Chapter 5.
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2.6 Future Scenario Prediction

Researchers working on contingency discourse tasks in NLP, specifically new
event prediction, have regarded causal relation extraction from text data as be-
ing particularly challenging (Radinsky et al., 2012). Radinsky & Horvitz (2013)
initiated this research with the automatic compilation and generalization of a
sequence of events from different web corpora. However, others have argued
that, in order to address causality, either two of the events in the consecutive
sentences must hold an inter-sentential contingent relation (Riaz & Girju, 2010)
or there should be a pre-trained event-causality chaining database generated
from web data (Hashimoto et al., 2014). Therefore, future scenario prediction
problems require prior event knowledge, which is unlikely to be available in
our case, since users will typically have no prior knowledge about the plausi-

ble causes of a query event.

Riaz & Girju (2010) showed that two novel measures, Effect Control Dependency
(ECD) and Effect Control Ratio (ECR), were effective in identifying cause-effect
pairs from online news articles. This was achieved by looking at both ‘intra-
sentential” and ‘inter-sentential’ texts, without relying heavily on prior con-
textual information. Specifically, the authors considered context as consist-
ing of two events: the cause (independent) event (X), and the effect (depen-
dent) event (Y'), which holds a contingent relation in between, such that X —
Y. Consider the example: ‘Katrina [hit] Florida late last week. Since Friday,
Dallas-based Southwest airlines [cancelled] more than 250 flights.” Here two
of the events in the consecutive sentences hold an inter-sentential contingent
relation. However, in the context of our retrieval model, contingent relations
might not apply, as there will be cases where query events are not mentioned

in the relevant causal documents at all.

Aside from dealing with semantics, context and association features of web
data (such as, ‘conduct slash-and-burn agriculture” — ‘exacerbate desertification’),
Hashimoto et al. (2014) exploits future scenario generation by chaining event-
causality using causal-compatibility (e.g. ‘conduct slash-and-burn agriculture’
— ‘exacerbate desertification” — “increase Asian dust (from China)” — ‘asthma gets
worse”). This chaining architecture is relatively novel, although previous work
by Radinsky & Horvitz (2013) did address contingency discourse by automat-
ically compiling and generalizing a sequence of events from various web cor-

pora.

Radinsky et al. (2012) showed that future plausible news event prediction of-
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ten involves causality. The authors introduced an intelligent system, called
Pundit, capable of modelling and potentially predicting future events For in-
stance, for an event ‘Magnitude 6.5 earthquake rocks the Solomon Islands’, ‘Pundit’
predicts “Tsunami-warning will be issued in the Pacific Ocean’. It used the event
knowledge database in which “Tsunami warning issued for Indian Ocean’ after
‘7.6 earthquake strikes island near India’ was one of the cause-effect sentence pair
which is applicable in only cases. This means that contingency discourse and
future scenario prediction both require prior event knowledge, which is not the
case we aim to address. In our case we focus on capturing triggering causes
behind any fact-based informational causal query where users are unlikely to
have access to this prior knowledge. The literature study in this section again
underlines the novelty and challenges around the task that we aim to solve in
this thesis.

2.7 Question-Answering

The NLP literature highlights that question-answering (QA) systems exploit
the inherent nature of causality by disambiguating the pervasive nature of
causal relations (Girju, 2003). This can help to identify inter and intra-sentential
causal links between terms and clauses to answer ‘why” questions (Oh et al.,
2013). Recently, a decision support system was proposed by Kiciman & Thelin
(2018) to foresee the consequences of queries like, ‘Should I join the military?” or
‘Should I move to California?’. Another group of researchers focused on a new
variant of QA, referred to as common sense causality identification (Gordon
et al., 2011, 2012). This technique helped to disambiguate discourse relations

and reasoning with sentence proximity by making use of knowledge bases.

More recently, question-answering systems have begun to exploit causal as-
sociations. For instance, Kiciman & Thelin (2018) proposed a method to ex-
plore ‘expectations’ in terms of online search by incorporating causality. How-
ever, the study of causality in question-answering began earlier with work by
Girju (2003) who proposed an automated system capable of capturing lexico-
syntactic patterns in the form of simple (e.g. cause, lead to, bring about, gen-
erate, make, force, allow), resultative (e.g. kill, melt, dry) and instrumental
causative (e.g. poison, hang, punch, clean), that are useful to exhibit ‘causation’
in English texts. The authors showed that their system is capable of disam-
biguating the pervasive nature of causal relations and proves to be coherent to

‘explicit’, ‘ambiguous’, and ‘implicit’ causal questions.
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Other researchers have investigated the significance of inter and intra-
sentential causal links between terms and clauses analyzing syntactic and
morphological features for re-ranking candidate answers to ‘why’-questions
(Oh et al., 2013). As a concrete example, {the ocean’s water mass is displaced
and, much like throwing a stone into a pond, waves are generated} q,sc and
{Tsunamis that can cause large coastal inundation are generated } . is a rea-
sonable answer to the question, ‘Why are tsunamis generated?’. Thus, QA ap-
proaches involve either lexical or syntactic patterns generation; or morpholog-
ical features extraction between cause and effect. Therefore, this does not fit
into tasks where causal documents are unlikely to have any explicit pattern

matching with the query event.

2.8 Deep Causal Relations

In recent years, causality has been incorporated into standard CNN models
(Narendra et al., 2018), and has also been used to furnish a general abstraction
over deep unsupervised learning methods (Raina et al., 2009). Work by Har-
radon et al. (2018) focused on the salient concepts extracted from a target CNN
network, which further helped to estimate the information captured by acti-
vations in the target network. Conversely, Li & Mao (2019) proposed the use
of knowledge-based CNNs to identify causal relations from natural language
text. Since 2018, with the extensive adoption of neural architectures, causality-
related research has moved in a new direction. A representative example is the
‘Structured Causal Model’ (Narendra et al., 2018), which applies causal inference
practices as part of a general framework to reason over classical CNN models.
Other researchers use causality to provide a general abstraction over DNN
(Raina et al., 2009; Zhou et al., 2015; Selvaraju et al., 2016) model in a way that it
can allow some arbitrary causal interventions and can answer related queries,
such as- What is the impact of the n-th filter on the m-th layer on the model’s pre-
dictions? In the same year, another group of researchers (Harradon et al., 2018)
employed a similar strategy, building a ‘Bayesian Causal Model” that works
with the salient concepts extracted from a target CNN network using ‘auto-
encoders’ trained with a novel ‘deep’ loss leveraging increased flexibility. These
auto-encoders helps to estimate the information captured by activations in a
target network. Li & Mao (2019) take an alternative approach, making use of

knowledge-based CNNSs to extract causal relations from natural language text.

Work by Kiciman (2018) and Kiciman & Thelin (2018) addresses causal infer-
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ence in IR, albeit in the reverse direction, where a query describes a cause (e.g.,
current situation or proposed action). In this case, the results yield a list of
possible effects. This approach leverages social media data and targets future
effects, while we target past causes focusing on news events. We also make
use of traditional term (re-)weighting techniques to reshape the retrieval al-
gorithm subjected to the query event, which contributes towards addressing
the underlying nature of cause-effect event pairs spanned across the collection.
For more details on this approach, see Chapter 5.

2.9 Summary

In this chapter we provided a comprehensive literature review on causality-
based research to date, emphasizing how this PhD study differs from existing
literature in the field. It is worth noting that, while there is a long history
of diverse work in that area, the techniques we enumerated consider causal
relations either at the sentence level or within a single document. In some
cases, these methods require prior knowledge about causal events, while in
other cases they require some predefined lexical, syntactic, or morphological
relations. However, these techniques do not cover the nuanced causes and
effects in larger document collections, such as those we seek to capture via
retrieval models. Therefore, to address the central research questions initially
introduced in Section 1.2, in the next chapter we propose a general end-to-end
architecture for causal information retrieval.
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CHAPTER

THREE

STANDARD IR AND CAUSALITY

3.1 Introduction

Traditional information retrieval systems are primarily focused on finding
topically-relevant documents, which are descriptive of a particular query con-
cept. Such systems mainly concentrate on matching terms between documents
and a user query, i.e., they apply topical relevance to address the user’s informa-
tion need. However, this might not address situations in which a user’s search
is intended to uncover the original causes that led to a specific event. More
specifically, when dealing with sources such as collections of news articles,
users often seek to identify not only documents that depict a news event but
also those that elucidate the sequence of events that could have potentially
culminated in the occurrence of that event. These connections can be intricate,

encompassing a multitude of causal factors.

The techniques described previously in Chapter 2 consider causal relations ei-
ther at the sentence level or within a single document. In certain cases, these
methods incorporate prior knowledge about causal events, while in others,
they rely on predefined lexical, syntactic, or morphological relationships. Nev-
ertheless, these techniques are likely to fall short of addressing more nuanced
causes and effects within extensive document collections, which is precisely
what we aim to capture using retrieval models. Therefore, in this chapter we
investigate this gap in the information retrieval literature, by addressing RQ-
1 in Chapter 1, i.e., whether a traditional search system is adequate for the
requirements of identifying causally-relevant information or a new research

paradigm to be introduced.

In order to answer the above research question, we introduce a theoretical

model of causality from an information retrieval perspective. In Section 3.2,
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we explain the distinctions between the proposed task and conventional re-
trieval problems. This chapter also aims to empirically investigate the ability
of popular retrieval methods to successfully retrieve causally-relevant docu-
ments. In Section 3.3 we describe a general causal IR workflow. Beginning
from Section 3.4, we investigate the extent to which the requirements of causal
search diverge from those of topical search. We do this by analyzing the per-
formance of various standard retrieval models on a pilot benchmark dataset

with causal annotations.

3.2 Why Do We Need a Causal Retrieval Model?

In practice, information retrieval tasks are addressed by making use of term
overlaps between a query and documents, where the notion of relevance varies
depending on the task specifications. As an example of this, consider the query
‘Why were the American military officers at Abu Ghraib prison accused?’, and
a set of sample top-ranked document excerpts for this query (see Table 3.1). If
the goal is to retrieve documents pertaining to the topic itself, then any doc-
ument detailing accusations against US military officers, offensive treatment
of detainees, leaked images of their torture, or related actions undertaken by
the US government might be considered as relevant. For example, four of the
documents listed in Table 3.1 could be considered relevant, and using term

overlap for retrieval fulfills the task.

On the other hand, if the task pertains to identifying causally-relevant docu-
ments recursively (i.e., queryeypent <= CAUSEepent $— CAUSEepent — -..) for the same
query, the notion of relevance would now be concentrated on ‘why US military
officers are accused” and the chain of further precursory causal events at differ-
ent levels. In that case, documents corresponding to reports on officers’ torture
stories, detainees statements accusing officers, or evidence published on news-
papers might be likely to meet the requirements of the task at a given level :
and for the next level i +1, we would be finding further prevalent causes given
the effect event at level i. Hence, out of the documents listed in Table 3.1 and
labeled as ‘causal’, only two appear to exhibit causal relevance to the query

specified above.

The question arises as to whether term overlap between the query and doc-
uments is sufficient to fulfill the requirements of this task, or if alternative
strategies are necessary. We delve into this question in the latter part of this
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Table 3.1: Document excerpts taken from the FIRE collection (Palchowdhury. et al.,
2011), for a query seeking information on accusations related to Abu Ghraib prison.

Query - Accused American military officers in Abu Ghraib prison

Topical The USis investigating a series of allegations of abuse, including sexual humili-
ation, of prisoners by the US military in Irags Abu Ghraib jail...

RelDoc: 1 The first American military intelligence soldier to be court-martialled over the
Abu Ghraib abuse scandal was sentenced today to eight months in jail...

The torture in Abu Ghraib prison reflects the breakdown in the chain of com-
mand in the US military...

RelDoc: 2 ...abuse is everywhere routine. One cornerstone of this new US policy seems to
be to outsource the task of interrogating....where torture is routine like Syria or

Egypt...

Causal  ...afemale US soldier dragging an Iraqi detainee on the prison floor like a dog
on a leash, one end of which is shown tied to the mans neck...

RelDoc: 1 ....one detainee handcuffed to a bunk bed in Baghdads Abu Ghraib prison, his
arms pulled so wide apart that his back is arched...

....they were savagely beaten and repeatedly humiliated by American soldiers
working on the night shift at Tier 1A in Abu Ghraib during the holy month of
Ramazan,....

RelDoc: 2 ...they were pressed to denounce Islam or were force-fed pork and liquor...They
forced us to walk like dogs on our hands and knees...hitting us hard on our face
and chest...

chapter. Moreover, events that are eventually reported by news media are of-
ten triggered by a series of causes spread over an extended period of time.
Consequently, making the initial query more specific by adding cause-related
keywords, such as “American military officers accusation causes (or reasons)’,
and then using a traditional IR system appears unlikely to retrieve relevant
information, since details regarding the causes of the event might not be ex-
plicitly reported in news articles. However, such causality-specific informa-
tion could be discovered by analyzing a number of documents and associating
the latent relationships between their terms, along with the chain of triggering
causes. Once more, we investigate this matter later in this chapter.

3.3 Causal IR Model Workflow

For a causal retrieval model, we assume that the user is searching for cause-
related information and there exists an agent or system to assist the user. Given
a query event Q = {qo, ¢1, .., ¢ }, where, qo, ¢1, .., g, are the query terms, the user
seeks documents containing causal information related to the query, and the
search is performed over a fixed document collection C. A causal retrieval

model will therefore aim to present causally-connected information in a recur-
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sive fashion. That is, given an event, it finds possible causes for that event. It
is worth mentioning here that such causally-connected information may have
several forms, such as, it can be a sentence, a paragraph or even an entire doc-
ument. Furthermore, given those causal documents which might contain any
event that has further causal information need, the system then finds what
might have caused those second level causal events, successively (see Figure
3.3). Here each succession represents one level in the chain of causes. We now
formally describe the complete retrieval process.

We assume that a n-term query Q can be represented as the 0" event at level-0
(i.e., no retrieval is performed yet), which we denote as Df, ;. At the next level
(i.e. level-1), D?QO) acts as a potential query and the system displays a set of
top ranked k documents to the user, denoted as DY) = {D;, D, ....., D, }. Here
consider each document D; € D might contain one or multiple potential event
in it which might have preceding causes. Again we mention that each of these
D; € D can be a single sentence, a paragraph or an entire article containing
zero to multiple causal event/s. Thus, we constitute a document D; at level-1
_ 1 1 1 1 1 ‘th

as D;= {D(j,l), D(j,Q)""' D(j,i)""" D(j,n(D]l))}' where D(M denotes the *" event
identified at level-1 from the document retrieved at j** rank.

Assume that at level-1, D(lj ;) is recognized as a potential event which has pre-
cursory chain of causes. Consequently, D(; , will act as a query at level-1 and

o =D00_0 u Q@@

‘ assassination of osama Q‘

_I‘ ! . : . act as the root ofa | | The United States blames bin Laden and his al Qaida
H H H network for the September 11, 2001, hijacked plane attacks
. . . subtree — expapded on America that killed more than 3,000 people and has
after the user clicks vowed to destroy them.....
Dl =ee pl =es pi on this

1,2 J.2 k2o 0] United States has offered a $25.....the voice on the audio
N N N tape hailed anti-Western attacks in Bali, Kuwait, Yemen and
H H H Jordanand last month's| hostage-takingin Moscow |......
. . .

y 2
D 1 Osama bin Ladens al Qaida netwgyk may be plotting
2IPIDIDDDD . [>DDD | | spectacularat
st J > 1 the aviation, d

Cg\ g / l \ ‘ hostage taking moscow Q. ‘

J1 Chechnya had long struggled to assertits independence. A

Js n( D! ) H disastrous two-year war ended in 1996, but Russian forces
J . returned to the region justthree years later.......

i-th event identified

== i-th event identified After a 57-hour-standoff at the Palace of Culture, during
from the document which two hostages were killed, Russian special forces
retrieved at level-1 at . from the document surrounded and raided the theater on the morning of
the j-th rank H retrieved at level-2 October 26 ...

, at the j-th rank
D jon(D2) new ranked list
j

Figure 3.1: General workflow of a user’s experience in a hypothetical interactive
causality search interface for an input query.
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retrieve a further set of k causally-relevant documents, which will be treated
as level-2. In this situation, D(lj,i) could be displayed to the user as hyperlink,
which expands to a new set of ranked list once clicked by the user. As shown
in Figure 3.3, the candidate causal event D, , is considered as root of the sub-
tree at level-2 and it further expands to a new ranked list of documents D® =
{D1, Ds, ....., Di.}. Thus, we repeat the same steps as at level-1 and the process

continues recursively.

Evidently, at each level of this process, the main challenge involves retrieving
the top-ranked causally-relevant document pertaining to the event. Therefore,
in the next section we investigate the problem analytically to find the answer
to our first research question — is a traditional search system adequate for the
requirements of the causal information retrieval task?

3.4 Problem Investigation

If we observe the term overlaps of topical and causal documents in Table 3.1 for
a given query event, the two sets of relevant documents (topical and causal)
will have only a partial term overlap. With the help of a pseudo-relevance
feedback technique, one might make use of high term sampling probabilities
for terms that are infrequent in the pseudo-relevant document set to identify
causal documents. However, prioritizing infrequent terms might always not
helpful, especially in cases where the query is quite broad, such as “Assassina-
tion of Osama bin Laden’. We illustrate this situation in Figure 3.4, where it
is clear that many terms, such as Bush, Iran, SEALs, and typhoid are quite in-
frequent. However, these terms might not lead us to the actual causes of the

event.

Therefore, to investigate the nature of causally-relevant documents and how
they are coupled with that of topical one, we first conduct a number of ex-
periments on a pilot causality dataset!. This represents a subset of a collec-
tion 303,291 news articles retrieved from The Telegraph India?. There are 25
topics which have a causal information need and annotated relevance judg-
ments, each related to a different news event. In the next section, we describe
the dataset in detail. We measure the cosine similarity between the two as-
sociated relevance judgment sets (i.e., topical and causal) based on their term
associations, as depicted in Figure 3.4. We observe that news events which

! Available at https://cair-miners.github.io/CAIR-2020-website/
’https://www.telegraphindia.com
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Figure 3.2: Per-query topical-causal relations in terms of relevant documents. Each
bar shows the cosine similarity between topical and causal documents for any given
topic in the pilot dataset.
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Figure 3.3: Per-query topical-causal relations with respect to terms in the top ranked-
documents. Here the term associations are related to Osama bin Laden’s assassination.

might have been triggered by multiple causes, such as “Assassination of Osama
bin Laden’ (topic-1 in the dataset) or involve prominent figures or organiza-
tions that are often reported in news articles, such as ‘Maharashtra chief minister
resigned’ (topic-3 in the dataset), have poor similarity between both set of doc-
uments. This reflects the fact that the causal results for this event have a small
term overlap with the topical set. In contrast, the similarity value increases
substantially if events have either a smaller number of causal factors, such as
‘Carphone Warehouse terminated deal with Channel 4" (see topic-19 in the dataset),
or are related to less significant entities, for example ‘Court blocks Facebook in
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Pakistan’. Such cases exhibit considerable term overlap, which we validate
with retrieval experiments later in this paper. Furthermore, we explore this
association with a couple of experiments and discuss our observations in the

following subsections.

3.5 Pilot Causal Retrieval Dataset

Since the task of causal retrieval itself is novel, there currently exists no ready-
made dataset tailored for it. This section outlines the process of creating an
initial pilot dataset for the task, named as pilot causal retrieval dataset (PCRD).
This dataset has been made available to the IR community (web, 2021a) with
the intention of encouraging additional research focused on causality. Specifi-
cally, for our experiments, we use the English ad-hoc IR collection of the FIRE
evaluation forum (Palchowdhury. et al., 2011) as the target document collec-
tion. This test collection is comprised of news articles retrieved from The Tele-
graph India, published over a period of 10 years (2001-2011). The crawled con-
tent is structured using XML markup and organized into distinct categories or
domains, including “sports,” ‘business,” and more. The entire collection com-
prises 303,291 documents. Table 3.2 provides an overview of our pilot PCRD
dataset.

3.5.1 Queries

As queries (topics), we used our prior knowledge about the news events in
the collection to curate a fixed set of events, such that for each event it can
be reasoned that a number of factors could have been responsible in leading
towards it. We exclude those cases where the factors are either too obvious
(e.g. mentioned in the same document also describing the query event) or the
number of such factors is too small in number (i.e., < 1). We also ensured
that each topic is representative of an event that occurred during the period
covered by the target collection, i.e. between 2001-2011.

We compiled a total of 25 queries for our study. Each query comprises of a title
(a small number of keywords), a description (a well-formed sentence describing
the information need in more detail), and a narrative (a paragraph describing

the causation-based relevance criteria).
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Table 3.2: Summary of the data used in our experiments having two types of rele-
vance judgements, topical and causal. The columns ‘|Q|” and ‘# Rel’ denote average
number of query terms and average number of relevant documents, respectively.

Collection #Docs #Topics RelSet |Q| #Rel #Rel
) Topical 1,064 4256
FIRE ad-hoc English 303,291 25 Causal 578 23.12

3.5.2 Relevance Assessments

A pool of documents for manual relevance assessments in standard topical re-
trieval is usually constructed by combining the top-ranked documents iden-
tified by a number of different systems (Voorhees & Harman, 1999). In the
context of causal retrieval, employing this conventional approach to construct
the pool is likely to yield poor results due to two main reasons. Firstly, unlike
topical IR, there is a lack of empirically established models for causal IR (in
fact, the purpose of developing the manual assessments is to establish one).
Secondly, relying solely on the proposed causal relevance model and standard
topical relevance IR models (e.g., BM25, LM, etc.) does not guarantee the in-

clusion of genuinely relevant documents in the pool.

To alleviate this issue, we treated causation finding for a topic as an ex-
ploratory task involving a series of query formulations and reformulations.
To aid our exploration, we used an interactive system that allowed bookmark-
ing documents for future use (e.g., start exploring along a particular aspect of
a potential cause of the main topic). At the end of the exploratory task, these
bookmarked documents, being indicative of potentially relevant documents to
establish the causal links with the query topic, were added to an assessment
pool. Further, documents top-100 retrieved with standard IR and feedback
models (specifically LM, BM25, and RLM) were added to this pool. Documents
from this pool were then assessed with binary causal relevance judgments us-
ing both prior knowledge on the topic and the knowledge gained during the

exploratory session.
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3.6 Initial Experiments

3.6.1 Methods Investigated

Considering our objective to explore the concept of causal relevance for query
events, we assess the effectiveness of various standard retrieval models to de-
termine their ability to fulfill the requirements of causality. Firstly, we em-
ploy a retrieval framework with the BM25 ranking function to see if query
term overlaps with the document could capture causes or not. We named this
method ‘BM25’ as reported in Table 3.3°. Next, we evaluated how classical
language retrieval models, specifically a linear smoothed language model per-
formed with: (i) Jelinek-Mercer smoothing; (i) Dirichlet smoothing (Zhai &
Lafferty, 2001). We refer to these methods as ‘LM-JM’ and ‘LM-DIR’, respec-

tively. Appendix A.2 details all the baseline retrieval models used in this thesis.

It is evident that there are specific representative terms for each query event
which result in the difference between its corresponding topical and causal
document sets. Usually query narrations are good resources for those rep-
resentative terms as they clearly express information need for the associated
task. Therefore, the next method that we investigate is ‘BM25-TN" (i.e. search
using Title along with Narration and rank by BM25), where we use topic narra-

tions as queries, which in turn leads us to a causally-relevant document set.

Based on the intuition that terms close to the query event in an N-dimensional
word vector space might be useful to capture causes, we examine whether
query reformulation with word2vec word vectors can capture causality. For
background information on the generation of word vectors, please refer to
Appendix A.3. We make use of a pre-trained model, built on the Telegraph
collection described previously, to help us to learn query-term associations.
Once trained, this model can recommend related terms that are similar to the
query terms, which might potentially be causally relevant. Thus we selected m
nearby candidate terms for expanding the query to identify causal documents
from the target collection, ranking them using BM25 (referred to as ‘BM25-
W2V).

Finally, we explored the method ‘BM25-CS’ (Causality Specific), where we
make the query more specific to the causal information need. We consider
that a user might build queries including one or more causality-indicative
terms. For instance, ‘Assassination of Osama bin Laden causes (or reasons)’

3Code available at https://github.com/suchanadatta/AICS-2020.git

30


https://github.com/suchanadatta/AICS-2020.git

Table 3.3: Comparison of retrieval effectiveness of various standard retrieval models
both in topical and causal perspectives with respect to two different notion of rele-
vance, topical relevance (left group) and the causal relevance (right group) using stan-
dard retrieval evaluation metrics.

Topical Causal
MAP Recall nDCG P@5 MAP Recall nDCG P@5
BM25 0.6400 0.9125 0.8181 0.9440 0.4690 0.7846 0.7581 0.5840
LM-M 0.6410 0.8917 0.8148 0.9520 0.4423 0.7825 0.7411 0.5360
LM-DIR 0.6304 0.8846 0.8133 0.9040 0.4635 0.7817 0.7542 0.5840

BM25-TN 0.5774 0.8130 0.8062 0.9200 0.5272 0.9310 0.8043 0.7600
BM25-W2V  0.5390 0.7627 0.7691 0.9131 0.4410 0.6900 0.7382 0.5273
BM25-CS 0.2149 0.4829 0.4805 0.5200 0.1803 0.6170 0.4806 0.3120

might sound more reasonable than ‘Assassination of Osama bin Laden’, if the
search intention is to to find the causes of the event. Therefore, we made use
of a subset of 25 synonyms for the term ‘cause’ to formulate more causality-
specified queries on which to search. This set includes terms such as: {induce,
lead, produce, provoke, compel, elicit, evoke, incite, introduce, kickoff, kindle, motivate,
reason}.

3.6.2 Parameter Settings

Parameter tuning not only helps us to identify the performing method, but also
ensures that it provides a general setup for learning parameters in best possi-
ble way. The parameters associated with BM25, specifically &, (used for term
frequency scaling) and b (term frequency normalization by document length),
were varied in range of [0.1, 1.5] and [0.1, 0.9] respectively in steps of 0.1. We
also tuned A for the method LM-JM in the range [0.1,0.9] (varied in steps of
0.1), and p for LM-DIR in [500,2000] (varied in steps of 100). Additionally,
we varied the number of candidate expansion terms chosen by BM25-W2V
from 50 to 200, varying in steps of 10. Table 3.3 illustrates the optimal results
achieved by optimizing parameters using grid search.

In order to compare retrieval effectiveness across different approaches, we re-
port mean average precision (MAP) along with normalized discounted cumu-
lative gain (nDCG). We also report the comparative retrieval effectiveness with
respect to recall at top 1000 ranked list and precision at first 5 retrieved result.
More information about these metrics can be found in Appendix A 4.
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Figure 3.4: Comparison of AP scores per query for standard retrieval models.
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Figure 3.5: Distribution of AP scores per query for classical retrieval models.

3.6.3 Observations

From our results we make a number of observations. Firstly, it is clear from Ta-
ble 3.3 that, irrespective of examined model architecture, the performance of
traditional retrieval algorithm drops considerably as it attempts to find causal
information, in comparison with topical search. Secondly, BM25 improves re-
call marginally over linearly smoothed language models. However, Dirichlet-
smoothed LM appears to be as efficient as BM25 in terms of precision. Thirdly,
as discussed in Section 3.6.1, topic narrations are expected to lead us to the
causal chain of any query event and should deviate the search from topical
relevance to causal. In practice, BM25-TN proves to be competent in terms of
capturing more cause-related information than topical in the retrieved relevant
set (i.e., increased recall), which is our primary intention. Fourthly, it is evident
that blindly formulating any query that itself mentions the search intention
(i.e., BM25-CS), or expanding a query with terms that are closely associated in
the vector space of the target collection (i.e., BM25-W2V), is not adequate to
harness the search scope; rather it might deviate the search intention from the

actual topic to a large extent by adding noise.

To obtain a better understanding of document associations, we plot per-query
MAP histograms for both topical and causal relevance for three of the standard
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retrieval frameworks (see Figure 3.6.2). Also, we show the topical-causal MAP
distributions for each of the 25 queries in Figure 3.6.2. In Section 3.4, we argued
that cosine similarity values between topical and causal set of documents are
influenced by; (i) the number of causal factors (inversely proportional); (i7)
whether the query has any association with familiar entities (holds inverse re-
lation). The results show that the MAP values obtained for sets of topics justify
this argument. For example, topic-6: Babri Masjid demolition case against Ad-
vani (Indian Politician), topic-22: Lalu Prasad Yadav (Minister of Indian Parlia-
ment and was accused for multiple scams) convicted etc. achieved lower MAP
for causality task as compared to topical. Conversely, for cases, such as topic-
8: Court blocks facebook in Pakistan (single cause query and no important
entity), topic-21: Praveen Mahajan accused (non-public figure) etc. traditional

models performed well in terms of causality.

3.7 Conclusions

Causal retrieval is important in situations where a user’s search is focused on
finding the plausible causes of an event mentioned in the search query. For in-
stance, when a user wishes to investigate the chain of preceding occurrences in
the context of event-driven news. We have observed that there is a gap in the
literature in terms of research on causality search. In an effort to mitigate this
gap, we have formally defined the problem of causal information retrieval, and
explained how it differs from traditional topical search. Furthermore, we have
conducted experiments which demonstrate that traditional methods from the
information retrieval literature, which are focused on topical relevance, pro-
vide limited utility in finding causally-relevant documents. This re-enforces
the view that causal information retrieval remains an open challenge which is
worthy of further research in the IR community.

Taking this into account, we have proposed a model for a recursive causal re-
trieval model that will help users to perform in-depth exploration in terms of
causality pertaining to a news event, and the chain of causes which led to that
event. It is important to note that the pilot causal dataset used in this chapter
to explore how causal relevance differs from topical relevance does not sup-
port the precise identification of the exact span of causally-relevant text, which
could be one or more segments, within a given news article. Rather, the pi-
lot dataset contains more coarse-grained information. Specifically, in response
to a user’s causal query, this dataset offers a list of plausible documents that
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might contain the underlying causes of the queried event.

To the best of our knowledge, there is no such dataset available that focuses
on extracting the document excerpts indicating causally relevant information.
Therefore, in the next chapter, we discuss the unique characteristics of the
dataset required for this research and our course of action towards construct-
ing it. Note that the rest of the thesis makes use of the newly annotated fine-
grained dataset that focuses on capturing only the first level causal informa-
tion, rather than extracting causes at lower levels. Since our proposed model in
Figure 3.3 is recursive in nature, the retrieval performance at any current stage
influences greatly its subsequent course of action. Thus, the more we retrieve
cause-specific documents (i.e., document excerpts in our case) in response to
the initial effect in the form of a query, the better the recursive queries that we
identify further down the chain of causes. In contrast, a poor set of initially-
retrieved documents would likely lead to poor results further down the chain.
Therefore, accurately identifying first level causes represents a fundamental
challenge in causal retrieval that we address in detail later in the thesis.
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CHAPTER

FOUR

A NEW DATASET FOR CAUSAL
RETRIEVAL

41 Introduction

Since the research of causal information retrieval itself is novel, there currently
exists no off-the-shelf benchmark dataset for causal retrieval system evalua-
tion. The reason for this is that our objective of capturing causal relevance is
entirely different from that of traditional cause-effect textual entailed problems
(Riaz & Girju, 2014; Tanaka et al., 2012; Chang & Choi, 2006). In the existing tex-
tual entailment research, for a given effect, the relevant cause(s) are expected to
be immediately evident for that event, e.g. seismic plate shift causes earthquake.
In contrast, we are particularly concerned with uncovering a list of plausible
causes behind a query event across the whole collection, rather than being lim-
ited to a single sentence encapsulating both cause and effect fragments.

In Chapter 3 we discussed experiments based on a small pilot dataset which
was annotated at a document level —i.e., for any user input query having causal
information need, the dataset provides us with a list of relevant documents
that are likely to contain triggering causes of the query event. Each of these
relevant documents might contain one or multiple causes embedded within it.
However, on the basis of our initial findings, it was evident that this form of
annotation is insufficiently fine-grained, as it does not allow us to distinguish
between multiple distinct causes which might appear separately within the
same document. In contrast, our subsequent work within this thesis centers
on the development of retrieval techniques to effectively identify concise text
fragments in response to user queries. Consequently, to develop and evaluate
new methods to solve this type of problem requires the creation of a new causal
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task-specific dataset. In this chapter, we detail the construction of a carefully-
annotated dataset which we use to conduct our causality-driven IR research
later in this thesis. Additionally, we have made this dataset accessible to the

IR community for further research in this area’.

We first outline the dataset characteristics in Section 4.2, providing details
around the source of the data, selected queries, and relevance assessments.
Furthermore, annotation protocol with a sample annotation is detailed in Sec-
tion 4.3. Section 4.4 describes the characterization of the annotated dataset
and finally, in Section 4.5, we discuss the challenges that were faced during the

annotation process.

4.2 Dataset Characteristics

A dataset for the standard IR ad-hoc retrieval task is comprised of three com-
ponents: a) a document collection, b) a set of queries, and c) a set of relevance

assessments for each query.

In the context of the first component (i.e. the document collection), it is evident
that the task of causal retrieval is particularly relevant in the context of a cor-
pus of news documents. Such documents often offer diverse perspectives on
contemporary events, such as elections, legal cases, and sporting events. Ex-
pert views and analysis of such events will often inform likely directions from
which the current state-of-affairs might lead. Consequently, it is reasonable
to assume that news articles from the past could contain information that de-
scribe the potential causes leading to a present event. Furthermore, there are
situations where studying a collection of news articles over time proves valu-
able, enabling the tracking of event evolution, the identification of trends, and
a comprehension of how past factors may have contributed to the occurrence

of a specific event.

The second component (i.e. queries for the causal retrieval task) should corre-
spond to those queries which specifically describe an event in time (e.g. ‘the
outbreak of a war between two or more nations’, ‘a major economic crisis’).
Events for which there is a single self-evident cause (e.g. the cause is revealed
in the article about the effect itself) are not interesting from the perspective
of the causal retrieval task definition. Some concrete examples of such a di-

rect cause-effect relationships are: i) news about heavy rainfall in a region ac-

!Dataset available at ht tps://github.com/suchanadatta/CARD-dataset.git
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Table 4.1: Excerpts of relevant documents (both topical and causal) for a query seek-
ing information on Osama bin Laden’s assassination from the dataset introduced in
Chapter 3.

Query - Assassination of Osama-bin-Laden

Topical Pakistan’s President Asif Ali Zardari today said that the whereabouts of Al
Qaida leader Osama bin Laden remained a mystery...

RelDoc: 1 was a suspicion that he could be dead... Zardari said US officials had told him
that they had no trace of the Al Qaida chief.

...a leaked foreign intelligence document published....a loud buzz that Osama
bin Laden may have died of typhoid in Pakistan last month, but no country
would confirm anything...

RelDoc: 2 ...citing an uncorroborated report from the Saudi secret services that the leader
of al Qaida terror network had died. The chief of al Qaida was a victim of a
severe typhoid crisis while in Pakistan on August 23, 2006, the document said...

Causal  Anaudio tape broadcast... sounds like the voice of Osama bin Laden threatening
attacks against US allies,...If it genuinely is bin Laden’s voice, makes references
to recent events such as last months Bali bombings and the Chechen hostage
siege in Moscow...

RelDoc: 1 warned US allies that they would be targets of new attacks...The United States
blames bin Laden and his Al Qaida network for the September 11, 2001, hijacked
plane attacks on America that killed more than 3,000 people, ...

Osama bin Ladens al Qaida network may be plotting spectacular attacks inside
the US,...Bin Laden and Al Qaida have been blamed by Washington for the hi-
jacked aircraft attacks on September 11, 2001, which killed about 3,000 people...

RelDoc: 2 Al Qaida may favour spectacular attacks that meet several criteria: high sym-
bolic value, mass casualties, severe damage to the US economy and maximum
psychological trauma, the FBI said...

companied with the news about flooding in certain localities; ii) news about
a mass shooting by a gunman followed by the news on his arrest. In contrast
to these direct cause-event relationships, here we are interested in more com-
plex events, where pieces of causal relations are spread across a number of
different articles, with multiple opinions on subject matters open to different
interpretations (e.g. it is difficult to find a single direct cause for the drop in the
pound value prior to Brexit). In such cases, we might have multiple news arti-
cles which present different viewpoints, opinions, and expert analyses. When
combined, these can provide a comprehensive view of the causes that play

around a given event.

The criteria for the third component (relevance assessments) naturally differ
in the context of causal retrieval. In this case, a document’s relevance is deter-
mined by its connection to a potential cause of the specified effect in a given
query, as opposed to simply topical relevance. Table 4.1 illustrates the differ-
ences between the two types of relevance for a sample query seeking informa-
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tion on the assassination of Osama bin Laden. While the concept of traditional
relevance aligns with the topic itself (the two sample documents relevant to the
topic discuss the possibility of bin Laden’s death), the sample causally-relevant
documents offer insights into several events that eventually might contributed
to bin Laden’s death (such as ‘Bali bombings’, ‘hijacked aircraft attacks which
killed more than 3000 people’, and ‘severe damage to US economy’, among
others).

4.2.1 Document Collection

The base collection that we chose for this research is the widely-used TREC
Washington Post Collection®. This data contains five years of news articles,
from 2012 to 2017. This corresponds to over 600,000 documents covering all
Washington Post content from that time period: articles, columns, and blogs.
The documents are stored in ‘JSON-lines’ format®, where each document is
represented as a single line of J[SON. The textual content of each article is
broken into content paragraphs, with interspersed media such as images and
videos referenced by URLs. Those links point back to the website of The Wash-
ington Post and, according to the Post, should persist at those URLs for the
foreseeable future.

There are a considerable number of duplicate documents in the collection. This
occurs as, at times, the Post will republish an article, and the provenance his-
tory is not represented in the data. Prior to performing any experiments, we
cleaned the collection to remove documents with identical content (including
the document identifier). As with the TREC News track?, there are many near-

duplicate articles in the collection, which we preserve as is.

4.2.2 Queries

As queries (topics), we used our prior knowledge about the news events in the
collection to select a set of events, such that for each event it can be reasoned
that a number of factors could have led to that event. We exclude those cases
where the causality factor is either too obvious (mentioned in the same doc-
ument also describing the query event) or the number of such factors is too

’https://trec.nist.gov/data/wapost/
Shttps://jsonlines.org/
*http://trec-news.org/
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<top>

<num>Number:321</num>
<docid>9171debc316e5e2782e0d2404ca7d09d</docid>
<url>https://www.washingtonpost.com/news/worldviews/
wp/2016/09/01/women—-are-half-of-the-world-but-only
-22-percent-of-its-parliaments/</url>

</top>

Figure 4.1: Sample query article in XML format.

small in number (< 1).

Specifically, we selectively chose topics from the TREC News Track® topic set
comprising 201 queries in total. We thus ensured that a query is representative
of an event that occurred during the period covered by the target collection
(between 2012-2017). We curated a total of 45 topics that have causal link for
our study. Each topic comprises a docid (‘id” field in the Washington Post cor-
pus documents), a url (‘article url” field in the documents). Both indicate the
query article. A sample topic is shown in Figure 4.2.2.

4.2.3 Relevance Assessments

As discussed in Section 3.5.2, for standard IR, manual relevance assessment
typically involves creating a pool of documents by first combining the top-
ranked documents retrieved by a number of systems. In the case of causal
retrieval, such a pooling approach is unlikely to work well, since there cur-
rently exist no empirically-established models for causal IR. However, relying
on the proposed causal relevance model and a number of standard topical rel-
evance IR models (e.g. BM25, LM) alone cannot ensure the inclusion of all
truly-relevant documents in the pool. Table 4.1 depicts the two different types

of relevance. However, our focus in this thesis is only on causal relevance.

In our work, we focus our attention on the relevance space defined by the
TREC News Track for the background linking task (Soboroff et al., 2018). Specif-
ically, we manually evaluate the relevance of documents corresponding to the
same set of 45 queries used in the background linking task. We opt for this
selection because the task closely aligns with our own objective of extracting
causal links. More precisely, this task aims to provide evaluation data to sup-

port researchers in developing systems that can help users contextualize news

Shttp://trec-news.org/

39


http://trec-news.org/

articles as they are reading them. For instance, news websites often incorpo-
rate links to related articles in sidebars, at the end of articles, or embedded
within the text.

The primary distinction between background linking and our research in
causality lies in our central objective. While background linking typically en-
tails offering a general context (which may lack causal relevance), our aim
revolves around presenting users with causally-connected contexts. Addition-
ally, we aim to capture the concept of causation in a more fine-grained way.
Specifically, our goal is to provide users with a list of document excerpts that
highlight the causal triggers of the query, rather than presenting the entire doc-
ument. This makes our problem even more challenging than the established
background linking task.

4.3 Annotation Process

This section describes the end-to-end annotation including the specific details
on particularly how we selected annotators, protocols followed by them, an-
notation tool used followed by a sample annotation example for clear under-
standing of the readers; and finally a couple of challenges faced during anno-
tation and how do we overcome those challenges.

4.3.1 Annotator Selection

In order to capture fine-grained causal text fragments from the long-form news
articles provided by The Washington Post, we appointed human annotators to
produce manual judgments for the selected queries, who would be prepared
to undertake considerable background studies to understand the context of the
news articles and the events which they describe. Therefore, instead of using a
number of anonymous annotators who might blindly perform annotations, we
employed two local academic annotators from separate disciplines and back-
ground to ensure the diversification of opinions. Both annotators worked in-

dependently over a two month period.
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4.3.2 Annotation Protocol and Tool

As mentioned in Section 4.2.2, to construct the new causality-driven dataset,
we select a subset of TREC News Track queries comprising 45 queries in to-
tal, with a selection criteria of having causal information need in the query.
For annotation, we use a subset of the relevance judgments from the existing
background linking task. That task provides graded relevance scores in the
set {0,2,4,8,16}, where, 0 = the document provides little or no useful back-
ground information; 2 = the document provides some useful background or
contextual information that would help the user understand the broader story
context of the target article; 4 = the document provides significantly useful
background; 8 = the document provides essential useful background; and
16 = the document must appear in the sidebar otherwise critical context is
missing. Based on the grades above, for our annotation purpose, we consider
only those judged documents having relevance scores > 4, which are likely to
contain causally-relevant background information in relation to their respective

query events.

Before commencing the annotation process, we provided annotators with com-
prehensive guidelines concerning data handling and the specific nature of ex-
pected annotations. These instructions included sample queries along with
their corresponding lists of causes. To ensure the quality of our annotations,
we also curated a series of test queries. For these, we manually identified all
the causal text excerpts in a recursive manner and then prompted the anno-
tators to perform the same independently. When their assessments closely
aligned with ours, we considered their annotations as reasonable and their
subsequent judgments as dependable. Instances of annotator disagreements
were resolved through a majority voting policy.

Label Studio® was used for annotation. This open-source data labeling plat-
form supports multiple projects, users, and data types within a unified inter-
face. It allows users to perform different types of labeling with many data
formats. Also, users can integrate Label Studio with machine learning models
to supply predictions for labels (pre-labels) or to perform continuous active
learning. More details about this tool can be found here’.

®https://labelstud.io
"nttps://labelstud.io/guide/get_started.html#Quick-start
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Amid plenty of political sure everything stays on track on the Webb assembly line at Goddard. He says testing of individual parts, including

Figure 4.2: Sample annotation snippet from Label Studio interface.

4.3.3 Sample Annotation

As discussed above, annotators were provided with guidelines around how
to make judgments on the given data and what they are expected to provide
as outputs. We did not expect annotators to have clear prior knowledge on
every topic that will be presented for annotation. Therefore, we aimed to pro-
vide sufficient background information relating to the target topics. For each
query, we provided a list of full Washington Post articles that were judged as
being relevant in the TREC background linking task. Annotators then manu-
ally highlighted the causally-relevant text fragments within those articles via
the Label Studio interface. No restrictions were imposed on the length of the
highlighted fragments, so these could range from short text snippets to frag-

ments spanning multiple sentences.

As an example, consider an article from the Washington Post ® on ‘why might
the Webb space telescope replace Hubble?’. A sample annotation for this docu-
ment using Label Studio is shown in Figure 4.3.3. Label Studio allows users
to create multiple labels at the same time. In our case, for each document, we
provide annotators with two separate labels, namely ‘cause’ (red in color) and
‘causal-query’ (in yellow). These two labels map to the first level causes and

8https://www.washingtonpost.com/national/health-science/
webb-space-telescope-promises—astronomers—-new—scientific—adventures/
2014/11/17/4b2533f0-4e64-11ed-babe-e91da079cb8a_story.html
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further subsequent causes respectively, as discussed in our general framework
depicted in Figure 3.3 in Chapter 3. To illustrate the label ‘causal-query” fur-
ther, consider the text segment ‘Astronomers are hoping that the Webb will be
able to collect light that is very far away from us and moving still further away’
in yellow as in the Figure 4.3.3. As per the model architecture in Figure 3.3 in
Chapter 3, this causal indicative text segments at the first level is also sup-
posed to be annotated as the second level potential query event, as user might
want to explore more on the underlying ‘why” aspect of this highlighted text
excerpt, labeled as ‘cause’. However, this thesis only aims to retrieve the first
level causes, leaving the second level causal annotations as our future scope of

research.

The annotation process thus yields a 3-valued tuple, <QueryID QueryText
CausalText> for each examined text segment as shown in the Figure 4.3.3
and a list of potential next level of causal queries for the respective initial query
event. Annotators finally obtained a collection of similar annotations, covering

a range of topics and articles.

4.4 Characterization of the Dataset

Based on the relevance grades outlined in Section 4.3.2, for our annotation pur-
poses we consider only those documents having relevance scores > 4 for all
45 causal queries. This relevance threshold reduces the total number of doc-
uments to be annotated from 2, 183 to 907. Each of these 907 documents was
annotated by two individuals. We then combine their outcomes by taking the
union of the two annotation sets. This yields a total of 704 causal text frag-
ments for 45 queries, i.e., on an average nearly 16 text fragments are extracted
for each query. The overview of the dataset is presented in Table 4.2.

Note that, in our causal query set, there are 4 queries (IDs: 626, 841, 855, 904)
that have only one document to be annotated, when the relevance threshold is
set to > 4 for annotation. In some cases, there are documents which despite be-
ing judged as highly relevant in terms of containing background information,
with relevance score > 4 by TREC News Track, we however do not find any
relevant information as per our objective connected to causality. There are 76
such documents in the annotation set which means per query we have nearly

2 documents with no causal annotation.

It is evident that this particular causal information extraction task will involve
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Table 4.2:  Summary of the data manually annotated for causal research. The
columns ‘|Q|" and ‘# Rel” denote average number of query terms and average number
of relevant documents, respectively.

Collection #Docs #Topics |Q| #Rel #Rel
Washington Post 2012-2017 603,074 45 11 704 16.76

some subjectivity issues in almost all the cases, leading to disagreements be-
tween annotators. The issue of tackling such disagreements are discussed in
the next section. However, to estimate the average disagreements, we mea-
sure the Cohen’s Kappa coefficient’ (x) and it is observed that x score was in
the range of 0.6 > x < 0.8 for each query, which suggests that there is broadly

a high level of agreement between annotators.

4.5 Annotation Challenges

Data annotation has always been a challenging task in terms of many aspects
in the retrieval literature (Soboroff et al., 2018; Craswell et al., 2020) retrieval
task is no exception. While we had annotators from different disciplines and
backgrounds, there were a number of common challenges which arose during

the process.

Firstly, given the fact that news events often involve different perspectives
and viewpoints, there could be high chance of low agreements among anno-
tators. We provided annotators with a detailed sample annotation to make
them aware of this subjectivity aspect of the task. However, since this form of
annotation may sometimes be opinion-based rather than entirely fact-based,
we aimed not to restrict annotators with a strict manual on what exact rel-
evant information we are seeking in response to a causal query. Rather, we
encouraged them to read the background around each query event and then
annotate documents as per their own rationale. Following this strategy led us
to face various questions from the annotators about the coverage of each topic

in general.

As an example, we consider the topic in the dataset topic 397: “why do some
Takata airbags need to be replaced twice?’. One annotator observed that there
were some causes provided in the data that explained why airbags should be

%It is a statistic that is used to measure inter-rater reliability (and also intra-rater reliability)
for qualitative (categorical) items
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initially replaced, but not necessarily why they should be replaced twice. So
a question arose around whether reasons for a single replacement should also
be annotated as genuine causes. In such scenario, group discussions were con-

ducted to clarify the scope of annotation and so as to minimize disagreements.

Secondly, there were a few cases where the exact text of the topics that we ob-
tained from the TREC News Track had to be reformulated. For example, none
of the documents related to topic 948: ‘why are Australian forces accused of war
crimes in Afghanistan?’ contained information about accusation of Australian
forces, but rather focused on incidents relating to US forces. We had to resolve
these issues by manually reformulating queries, guided by thorough reading

of various background sources.

In addition to these primary challenges, there were instances where docu-
ments had been labeled as highly relevant according to TREC judgments, but no
pertinent information regarding potential background causes was discovered.
This emphasizes the significant difference between the concepts of causality
and topical relevance, further underscoring the complexity of the task.

4.6 Conclusions

This chapter provides an in-depth description of the complete process in-
volved in constructing the new causality-driven adhoc retrieval dataset, here-
after referred to as the CARD. Given the lack of an off-the-shelf benchmark
dataset for causal retrieval, we have made the CARD available to the research
community to support further work in the area. The remainder of the thesis
will make use of this newly created dataset as a key component in our exper-
imental evaluations. In the next chapter, we propose an unsupervised causal
retrieval model, which is evaluated on both our initial pilot collection and the

newly-annotated dataset.
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CHAPTER

FIVE

CAUSAL RETRIEVAL: AN
UNSUPERVISED APPROACH

5.1 Introduction

In earlier chapters, we discussed the distinction between conventional re-
trieval techniques, which aim to fetch potentially relevant documents based
on user queries, and the focus of this thesis: causal search. In this chapter, we
introduce methods to accurately retrieve a set of documents that might have
caused or led to an effect or event specified in a user’s query. Causality-based re-
trieval systems have potential applications in contextualizing events specified
in queries for the purpose of analysis and decision-making. In instances where
multiple potential causes exist for an event, such as the ‘drop in the value of
the British pound’, these systems can collate diverse opinions on the possible
causes. This allows users to assess the merits of each viewpoint (e.g., ‘delay in

implementing Brexit deal’, “uncertain situation of UK politics” etc.).

Our causality-driven IR harnesses the efficiency of the well-established tradi-
tional relevance model (RLM) (Lavrenko & Croft, 2001). We discuss the RLM
in detail in Section 5.2. Precisely, after executing an initial retrieval on the col-
lection, a top-scored set of pseudo-relevant documents is selected. There is one
linear interpolation parameter which weighs the importance of the original
query terms. The conditional probabilities of any term coming from the doc-
ument belongs to the pseudo-relevant document set and if the term is a part
of the initial query itself with respect to the same document are computed us-
ing smoothed maximum likelihood estimations. Terms with high probability
values are then used as candidate terms for query expansion. This estimated
relevance model seeks to select terms which are frequent in the top-retrieved
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Figure 5.1: Depiction of the schematics of the proposed Factored Causal Relevance
Model (FCRLM).

documents as the expansion term. As reported in other work (Lavrenko &
Croft, 2001; Ganguly et al., 2012; Salakhutdinov & Mnih, 2008; Roy et al., 2016;
Mackie et al., 2023), this technique has been seen to be effective in improv-
ing the performance of topical information need. However, to satisfy a causal
information need, retrieval systems need to employ expertise apart from top-
ical similarity of the query and the relevant documents. Hence, the standard
straightforward RLM approach might not be as useful for causality detection
as it is proven to be for addressing topicality based retrieval scenario.

In this chapter, we seek to find out the causally relevant information in an
unsupervised way following an IR perspective. In particular, for retrieving
causally relevant information in response to a query, we employ a relevance
feedback model with the assumption that causally relevant documents would
have only a partial term overlap with the topically relevant ones (e.g. although
the top-retrieved documents retrieved for the query ‘pound drop” are likely
not to contain terms, such as ‘Brexit’ or ‘EU’, a number of documents beyond
the top-ranks would), and also a majority of these causally relevant documents
would use a different set of terms to describe a number of possible causes
leading to the query event (e.g., some topics related to Brexit are not correlated
with the pound drop).

To address this expected behavior of term weight distribution for topical and
causal relevance, in this chapter we propose a two-step feedback model, where

the purpose of the first step is to estimate a distribution of terms that are topi-
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cally relevant to the query, and that of the second step is to prefer those terms
that are relatively infrequent in the distribution estimated in the first step,
which in effect leads to deviating away from topical relevance towards poten-
tial causal relevance. The overall idea is schematically depicted in Figure 5.1.
The figure illustrates our hypothesis that topical relevance (7") corresponds to
the top-ranked documents, whereas the documents that are causally relevant
(C) may exist further down the ranked list. We collect term distribution in-
formation from both these sets to use in a second-step retrieval process with
a broader, less-focused query. Finally, we favor those documents which com-
prise terms that have higher weights in C' and lower in 7.

In the next section, we first illustrate the technical details of the traditional rele-
vance feedback model. Next, we formally explain our proposed unsupervised
RLM-based causal retrieval model, namely, Factored Causal Relevance Model
(FCRLM), followed by comprehensive experiments and analysis.

5.2 Relevance Feedback and Query Expansion

Vocabulary mismatch (Furnas et al., 1987) is a major challenge in the IR domain,
which exists for the retrieval models discussed above. Let D be a relevant doc-
ument corresponding to a user query (. It may happen that () and D use dif-
ferent sets of words to describe the same concept. In such a scenario, it might
not be possible for a model to retrieve D simply on the basis of overlapping
keywords. For instance, in a search related to nuclear power, we might have
one document that uses the term “nuclear power”, while another which uses
the alternative term “atomic energy”. This is where relevance feedback comes
into play, allowing the retrieval system to refine its search and improve sub-
sequent results. After a user submits a query, they provide feedback on the
relevance of the initially retrieved documents. Based on this feedback, the sys-

tem adjusts its search criteria and performs another iteration of retrieval.

Relevance feedback techniques can be grouped into three primary categories

based on the way in which feedback is acquired:

¢ Explicit relevance feedback: Search results are directly specified as be-

ing relevant and non-relevant by a user.

¢ Implicit relevance feedback: User activity determines the feedback (e.g.
search history, click-through rates, dwell time).
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Figure 5.2: A conceptual view of explicit relevance feedback.

¢ Pseudo-relevance feedback: The top n documents in the initial search

are considered to be relevant.

An illustrative example of explicit relevance feedback is shown in Figure 5.2.
In practice, both explicit and implicit feedback can be difficult to obtain. In-
stead, systems often have to rely on pseudo-relevance feedback. Thus, we
focus now on techniques involving this type of feedback. Relevance based
language models (RLMs) (Jaleel et al., 2004; Lavrenko & Croft, 2001) repre-
sent a widely-adopted methodology for query expansion that is dependent
on pseudo-relevance feedback. RLMs hypothesize that, for a given query
Q = {q,...,qx}; where ¢, ..., g, are query terms, a latent probability distri-
bution R exists to generate both () and the documents relevant to it (see Fig-
ure 5.2). Subsequently, an approximation of R is carried out based on () and
the relevant documents. The potential expansion terms are selected from the
terms of R which have high probability weights. Thus, the performance of
the query expansion technique relies extensively on an accurate estimation of
R. The M top-ranked pseudo-relevant documents are usually considered as

being relevant documents when training data is unavailable.

The terms of a given query () serve as the exclusive evidence regarding the
relevance model. In other words, the set {qi, ..., ¢;} is definitively generated
from R. Hence, the probability density function (PDF) of RLM is given by

Plw,Q)
PQ)

P(w|R) ~ P(w|Q) = ~ P(w,Q) = P(w, q1, k) (5.1)

where P(w|R) is the probability of sampling a term w from R, P(w|Q) is its
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Figure 5.3: The query and its relevant documents are both random samples drawn
from the underlying relevance model R.

approximation (i.e., the conditional probability of observing w along with
{q1,..,qr}. As per Equation (5.1), the estimation of the PDF P(w|R) is es-
sentially the same as estimating the joint probability of observing w with
{¢1,-.,qx}. The joint PDF P(w, Q) can subsequently be estimated using either
(i) independent and identically distributed (IID) sampling, or (ii) conditional
sampling. We now discuss each of these in turn.

IID sampling. Conditional sampling of w together with ¢, ..., g, is conducted
to maintain the same distribution underlying a top-ranked document. Thus,
the probability estimation of P(w|R) can be expressed as:

P(w|R) ~ P(w,Q) = > _ P(wl|d) [ ] P(qld) (5.2)

deD qeQ

Conditional sampling. In this approach, conditional sampling of w together
with ¢, ..., g is carried out from document models which are not dependent.
Herein, each document model corresponds to a top ranked retrieved docu-

ment. Thus, the estimate of P(w|R) is given by:

P(w|R) = HP qlw) = HZP d|w)P(q|d) (5.3)

q€Q qeQ deD

In Equations (5.2) and (5.3), the set of top M retrieved documents is denoted
by D, while the variant of RLM in Equation 5.2 is referred to as RM1. Equation
5.3 is an expression of RM3.

As with RLMs, instead of giving importance to the terms in @), only a term
in the initial retrieved document list is considered. Work by Jaleel et al. (2004)
achieved significant improvements over traditional models by linearly inter-

polating the relevance model with the query model and explicitly considering
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the terms in the query:
Pl(w|R) = (1 = ¢)P(w|R) + ¢ P(w|Q) (54)

Here MLE is used to compute P(w|(@)) and Equation (5.2) (RM1) or Equation
(5.3) (RM2) can be used to compute P(w|R). The contribution from both the
language models is controlled by the interpolation term ¢ € [0,1]. The final
models are referred to as RM3 and RM4 respectively, corresponding to RM1
and RM2. It has been established by prior work (Lv & Zhai, 2009b) that RM3
outperforms all its variants, i.e. RM1, RM2 and RM4, which is why RM3 is
considered as potential baseline model in the experiments carried out in the
current thesis (see Equation (5.5)).

P'(w|R) = (1 - ¢) (Z P(wld) ]| P<q|d>> + ¢P(w|Q) (5.5)

deD qeQ

Thus, RM3 and RLM are used interchangeably in the present work.

The top N terms with the highest probability distribution weights are chosen
from the estimated probability distribution model R. These are subsequently
used as the expansion terms. Sum normalization is applied to the weight of
the N expansion terms before the task of retrieval is executed with query ex-
pansion. It is therefore vital that higher weights are assigned to the relevance
model estimate exclusive to the relevant models only and assigning lower
weights to the terms which are common. Otherwise, the performance may
deviate from the expectation in case the document is subjected to any form of

filtering which in the present case would imply excluding the metadata.

The initial retrieval and the retrieval with the expanded query can be per-
formed with any model. Given that RLM is based on language model-based
query expansion, in this thesis we conduct experiments using both baseline
and expanded retrieval, employing two major smoothing techniques (JM and
Dirichlet) and report the best, i.e., JM smoothing in this case. This is a com-
mon approach in the literature (Jaleel ef al., 2004; Lavrenko & Croft, 2001; Lv &
Zhai, 2009b). For more information on language models and various smooth-
ing methods, please refer to Appendix A.2.

Based on the concept of RLM (i.e. RM3), in the next section we formalize our
2-step factored causal retrieval framework as depicted in Figure 5.1.

51



5.3 Factored Causal Relevance Model

This thesis proposes a general workflow of a user’s experience in a hypo-
thetical interactive causal search interface in Chapter 3 (see Figure 3.3) where
at each level the main challenge involves capturing the top-ranked causally-
relevant documents pertaining to the query event. Consequently, one of the
research questions that this thesis investigates is if we can develop an unsu-
pervised system that is capable of generating a list of potential causes either as
a whole document or as document excerpts at the sub-document level (refer to
the RQ-2 in Chapter 1). To address this question, this chapter proposes a two-
step feedback model. In the first step, the objective is to estimate a distribution
of terms that are topically relevant to the query. Following this, the second step
aims to prioritize those terms that are relatively infrequent in the distribution
estimated in the first step. This deliberate shift away from topical relevance is

intended to highlight potential causal relevance.

We now formalize the ideas behind the FCRLM model presented in Figure
5.1. Given the distinct inherent characteristics of these two term distributions
— where topical terms align semantically closer to the query and causal terms
are more subtle — we now present the details of the term estimation via a two-
step feedback model (see Figure 5.3). As the first step, we intend to find a set
of terms that denote a set of concepts related to the main topic of the query.
The purpose of this step is to expand the set of initial query terms because a
small number of initial query terms is likely not to contain adequate informa-
tion to help find the causally relevant terms (and eventually the documents

themselves). Formally, we estimate a standard topical relevance model, 61 as

P(w|fr) = > P(w|D;) [] PlalDy), (5.6)
=1 q€Q

where the weights P(w|fr) capture the co-occurrences between terms in the
M top-retrieved documents, and a query term ¢ € Q. In the next step, we
estimate a relevance model 6 as a function of the topical relevance model, 6,
i.e., assuming the observed distribution in the RLM to be the one estimated
from Equation 5.6. Considering terms from the first step as observed terms
in an RLM has the effect of making the query more general, which according
to our hypothesis is more useful to find causal relevance (as compared to a
specific query pointing to an effect event).

The second step aims to balance a trade-off. On the one hand, terms in the
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Figure 5.4: Depiction of the estimation details of the proposed Factored Causal Rele-
vance Model (FCRLM).

causal model should correlate well with the general concepts of 67. On the
other hand, they should not correlate well with the query (effect event). In con-
trast to standard RLM estimation, we employ an odds-ratio between the proba-
bility of a term occurring within a document retrieved in the second step (with
a more general query), and the probability of the same term occurring within
a document retrieved in the first step (a more specific effect event query). For-
mally we define:

P(w|fc, 0r) = Z P(w H PE’;'@; (5.7)

Inspecting the ratio term in the product sign of Equation 5.7 reveals that this
estimation approach favors words that are:

1. Relatively infrequent in 67 (i.e., terms not too specific to the effect event

itself). This is due to a decrease in the denominator.

2. Frequent in the top-ranked documents retrieved with the more general
query, (i.e., terms corresponding to a more general aspect of the query
effect, which in fact could overlap with a number of potential causes).

This is due to an increase in the numerator.

Finally, by substituting Equation 5.6 into Equation 5.7, we get the final estima-
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tion model:

M

P(wl|fc, 6r) = Zp(wu)i) H P(t|D;)

) 5.8
i=1 teby Z]]Vil P(t|D;) quQ P(q|D;) 58)

The qualifier ‘factored” in the proposed model name suggests that the topical
model needs to be estimated first, which then leads to estimating the causal
one. This is reflected in Equation 5.8 above.

5.4 Experiments and Results

5.4.1 Dataset

In Chapter 3, we conducted our initial investigation for causality-driven IR on
a pilot dataset, PCRD, which is annotated at the document level. That is, for a
given input query, any causal retrieval model is evaluated on the basis of num-
ber of causally relevant documents being retrieved, where a document corre-
sponds to an entire news article. In Chapter 4 we introduced a new dataset,
CARD, which offers more fine-grained information than PCRD, in a sense that
we can evaluate models based on the number of causally-connected document
excerpts being retrieved. In this chapter, we make use of both the datasets (see
the overview of the datasets in Table 3.2 and Table 4.2) in order to examine the

robustness of our proposed causal retrieval model, FCRLM.

5.4.2 Implementation Details

We used Apache Lucene! for indexing the collection of documents. Specifi-
cally, for the PCRD-based experiments we create the Lucene index as a collec-
tion of whole documents (i.e., news articles), whereas in the case of CARD we
indexed the data at a sentence level, so that each sentence is considered to be a
separate document. The proposed method and the baselines were also imple-
mented using the Lucene API. Terms from the documents were stemmed us-
ing the Porter Stemmer, and we removed stopwords appearing in the SMART

stopword list?.

"https://lucene.apache.org/
’https://www.lextek.com/manuals/onix/stopwords2.html
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5.4.3 Methods Investigated

Our first baseline is a standard IR model (specifically, LM-JM) without feed-
back, where ) is the smoothing parameter. Our approach adopts a two-step
feedback model, specifically RLM (Lavrenko & Croft, 2001; Jaleel et al., 2004).
Therefore, for comparison, we use a single-step conventional RLM as our sec-
ondary baseline. To determine the effectiveness of the odds-ratio-based se-
lection mechanism — which prioritizes common terms from both topical and
causal relevance sets (67 and 6¢) such that terms are more likely in 6 than in
01 — we incorporate a relatively straightforward two-step feedback method as
a third baseline. Specifically, we use standard RLM (Equation 5.6) in a sub-
sequent step with the expanded query extracted from 01 (i.e., Q@ = 6r) to re-

estimate a second-step 6. We refer to this baseline as ‘RLM-2step’.

As another baseline, we employ a standard RLM to estimate 0 in a single step.
Instead of assuming that the top-retrieved documents are relevant, we assume
that the documents beyond the top-retrieved ones could be useful to estimate
causal relevance. In practice, we swap the top M documents with an alterna-
tive set of M documents, C,. = {D,, ..., D,y }, where p > M (i.e., an interval
of documents of size M following the top-M). This baseline makes use of the
causal relevance assumption only and it disregards information from the top-

retrieved ones. We name this baseline ‘CRLM” (RLM with causal relevance).

The next methodology that we investigate involves making queries more spe-
cific for a given causal information need. To illustrate with an example, the
query ‘drop in pound value’ can be made more specific for a causal need by
explicitly adding causality-related keywords such as ‘causes” and ‘reasons’ to
the query — e.g. ‘reasons for the drop in pound value’ or ‘causes for the drop
in pound value’. The purpose of reformulating the queries in this way is to in-
vestigate whether existing retrieval models can adequately address the causal
information need if queries themselves explicitly indicate that information is

sought on the causes related to an event and not the event itself.

In our experiments, we automatically constructed a set of causality-related
keywords, which we add to make an initial query on an event more specific
to seeking the causes for the event. One potential way to create this set is to
leverage a resource like WordNet (Miller, 1995) and select keywords that are
related to the seed word ‘cause’. However, we follow a more general approach
that makes use of a pre-trained set of word vectors® to identify a set of words

3The 300-dimensional vectors trained with skip-gram word2vec on Google News data
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Table 5.1: List of causality-related keywords added to an initial query to explicitly
seek information on the causes of an event, rather than the event itself.

cause, induce, lead, precipitate, produce, provoke, breed, compel, elicit, evoke,
hatch, incite, introduce, kickoff, kindle, motivate, reason

that are semantically related to the two seed words ‘cause” and ‘reason’. That
is, words with corresponding vectors having a high level of similarity to the
seed vectors in the embedded space. To ensure that the reformulated queries
do not deviate towards different types of information needs, we manually re-
moved any named entities appearing in the candidate set of nearest neighbors.
This process yielded 17 distinct terms, as enumerated in Table 5.1.

To determine the effectiveness of standard retrieval models when applied to
causally reformulated queries (using additional terms from Table 5.1) in ex-
tracting causal information, we apply all the previously described baseline
methods to this set of queries. We distinguish these by appending the suffix
‘CSR’ (indicating causality specific reformulation), such as ‘No-QE-CSR” and
SO on.

5.4.4 Parameter Settings

All feedback methods have a common parameter, denoted as M, which de-
termines the number of top-ranked documents considered for feedback. Each
method’s parameter is individually fine-tuned using a grid search in the set
of {10,20,30,40,50}. The purpose of the tuning here is not to claim that the
best performing method also generalizes in the best possible way for other
topics, as is the case when tuning learning parameters in a supervised task.
Rather, our aim is to ensure a level playing field when comparing different un-
supervised techniques. Another shared parameter is the number of terms, 7T,
having the highest weight values, P(w|R), which are used to calculate the KL
divergence for re-ranking in a standard RLM framework (Lavrenko & Croft,
2001). In our proposed model, FCRLM, we introduce an extra parameter,
T', which represents the number of top-ranked feedback terms used during
the second feedback step*. We tune the value of both T and 7" from the set
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

4Source code: https://github.com/suchanadatta/Factored-Causal-RLM.git
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5.4.5 Evaluation

We evaluate our proposed FCRLM with two differently annotated datasets
as explained in Section 5.4.1, i) PCRD - at the document level where an entire
news article is considered as relevant and ii) CARD - at the sub-document level
in which case any document snippet having causal indicative information is
counted as relevant. In this section we describe our evaluation strategy with
both set of relevance judgments.

Document level evaluation. When comparing retrieval effectiveness across
different approaches, we report the mean average precision (MAP) along with
normalized discounted cumulative gain (nDCG). More details about these
metrics are in Appendix A.4. Given the exploratory nature of searching for
causally-related information, where users are likely prepared to look beyond
the first page of results, we consider recall as a key metric. Thus, in addition
to precision-focused metrics like MAP and nDCG, we evaluate system effec-
tiveness based on the number of relevant documents found within the top 100
results, recall@100 or simply, recall. Finally, we also provide scores for PQ5,
which typically captures the ability of a system to find relevant information

within the first page of search results.

Sub-document level evaluation. Evaluating a system that retrieves informa-
tion at the sub-document level, such as document excerpts, is likely to be more
complex compared to document-level evaluation. In document-level evalu-
ation, for a given input query, the comparison between the list of relevant
documents and the retrieved relevant list is conducted through exact content
matching using their document IDs. Consequently, traditional Information
Retrieval (IR) evaluation metrics are well-suited for this approach. In contrast,
retrieval at sub-document level, i.e., capturing causal indicative piece of text
from a whole article might not manifest the concept of exact match between
relevance judgments and pseudo-relevant documents. Rather, we are more
encouraged to measure the similarity between the retrieved relevant and true
relevant document sets. Therefore, it is likely that given a query, a pseudo-
relevant document obtained in response to that query might score in a diverse
range while comparing with true relevant document set. In other words, for
the same pseudo-relevant document, it might score quite high similarity with
a true relevant document, however, similarity could be worse for a separate
judged document. In such situations, it is hard to decide if the pseudo-relevant
document is worth pushing towards the top of the result list. In order to ad-

57



dress this issue, we consider the maximum of all the similarities obtained for
a given pseudo-relevant document and binarize it (i.e., map it to {0, 1}) to in-
dicate if the same document is relevant or not. We illustrate the scenario with

an example as follows.

Example 5.4.1. Consider an input query ¢ retrieves 5 pseudo-relevant doc-
uments (note that each document is nothing but a document excerpt), say,
{dy,ds, ...,ds} and there are 3 judged documents available for ¢, such as,
{r1,r2,73}. Now, to decide if any document from {d;, ds, ..., d5 } to be labeled as
relevant, we measure the cosine similarity between each of {d;, ds, ..., ds } with
{r1,m2,73}. Let us consider the similarity values of d; with {ry,r,r3} yield
as {0.9,0.3,0.5} respectively. We then take the maximum of all the similari-
ties and map it to a binary value, which is mapped to 1 in this case as the
MAX(0.9,0.3,0.5) = 0.9 and any value >= 0.5 is binarized as 1; 0 otherwise.
Thus, we can rank the pseudo-relevant documents based on their binary rel-
evance and consequently, standard retrieval evaluation metrics, such as MAP,
recall etc. can be leveraged to compare the retrieval effectiveness among mul-
tiple retrieval systems.

5.4.6 Results

Table 5.2 shows the comparisons obtained between the proposed method and
the baselines on the two different datasets. We now discuss a number of ob-

servations stemming from these results.

First, it can be seen that a standard (topical) feedback approach, such as RLM,
results in a marginal improvement over the initial retrieval step (No-QE). This
indicates that applying off-the-shelf relevance feedback approaches is unlikely
to prove effective when seeking causally-relevant information.

Second, simply applying RLM twice in succession yields only slight enhance-
ments in MAP and nDCG, but this comes at the expense of decreased P@10 and
recall scores. This indicates that using term expansion to diversify the query
for identifying causally relevant terms might not be effective. According to
our hypothesis, these terms are less likely to emerge solely from top-ranked
documents, as assumed in a standard feedback model. The two step feedback
thus contributes to making the query more noisy (less specific to the topical in-
formation need) without effectively reformulating it to emphasize its pertinent

causal aspects.
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Table 5.2: Comparison of retrieval effectiveness between FCRLM and a number of
baseline models reported on both pilot (PCRD) and new dataset (CARD). The im-
provements achieved by FCRLM are found to be statistically significant with respect
to all the baselines (t-test with p < 0.05).

PCRD CARD
MAP nDCG P@5 Recall‘ MAP nDCG P@5 Recall

No-QE 0.3212 0.4909 0.2909 0.4991 | 0.2201 0.3898 0.1898 0.3744

RLM 0.3441 0.5906 0.3300 0.4833 | 0.2430 0.4895 0.2289 0.4471

. CRLM 0.2933 0.5280 0.3050 0.4578 | 0.1922 0.4269 0.2039 0.3911
Baselines

No-QE-CSR 0.1687 0.2157 0.1747 0.2731 | 0.0676 0.1146 0.0736 0.1563

RM3-CSR 0.1758 0.2968 0.1894 0.2664 | 0.0747 0.1957 0.0883 0.1854

CRLM-CSR 0.1541 0.3280 0.2500 0.3425 | 0.0530 0.2269 0.1489 0.2398

Proposed FCRLM 0.3645 0.6197 0.4100 0.5164 ‘ 0.2534 0.4986 0.2489 0.4658

Third, it is clear that CRLM, which employs a relatively straightforward heuris-
tic of relevance feedback using documents found further down the ranked list,
also fails to improve results. This indicates that terms from mid-ranged docu-
ments, which aren’t closely related to the primary information need, are more
likely to be off-topic than to possess causal relevance.

Fourth, the strategy of enhancing query specificity by directly adding causal
terms from Table 5.1 generally leads to reduced retrieval performance across
the baselines. This can be attributed to the fact that many causally-relevant
documents might not explicitly state the potential reasons for an event using

cause-indicative terms.

Next, we observe that our proposed model, FCRLM, outperforms all other
baseline approaches on each retrieval effectiveness metric. This confirms the
hypothesis that terms which are less common in the topical feedback model,
but simultaneously exhibit a higher likelihood of appearing in top-retrieved
documents during a second-step feedback, most accurately capture the con-
cept of causal relevance. The factored nature of FCRLM and the use of the
odds-ratio between the two factors facilitates retrieving documents that are not
directly related to the query, but rather represent the potential set of causally-

related precursors.

In addition to providing aggregated results, in Figure 5.4.6 we also present
the per-query results, demonstrating that the improvements obtained with
FCRLM are generally consistent across a number of PCRD topics, whereas the
merit of FCRLM seems to be inconsistent while experimenting with CARD
(see the bottom part of Figure 5.4.6). This conforms the fact that capturing the
nuance causal relevance at the sub-document level is even more challenging
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Figure 5.5: Per-query performance analysis of the queries from both PCRD (top) and
CARD (bottom) in terms of average precision. The difference in the blue and red bars
indicates the improvement of the proposed FCRLM over RLM and CRLM.

compared to the document level retrieval.

5.4.7 Further Discussion

We now present a qualitative comparison between the retrieval effectiveness
of RLM-2step (the second best performing in terms of MAP) and FCRLM. We
do this by inspecting the top set of expansion terms (ranked by their weights)
from each method, as shown in Table 5.3 for a sample topic both from the
PCRD and the CARD. The PCRD topic (‘Why did Shashi Tharoor resign as
member of parliament?’) pertains to a semi-political scandal that resulted in
the resignation of Shashi Tharoor, a member of the Indian parliament (see the
top of Table 5.3). Lalit Modi®, the then IPL® chairman, fweeted that Shashi’s
friend (with whom allegedly Shashi was having an affair), Sunanda Pushkar,
received free equity by team Kochi. It is seen from the highlighted words of

*Emphasized words in this story indicate causal relevance.
®A contending team in the Indian Premier League.
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Table 5.3: Top 20 expansion terms selected by RLM-2step, and FCRLM for an example
query from PCRD and CARD. Causally relevant terms that are exclusively estimated
by FCRLM only are bold-faced.

PCRD query Why did Shashi Tharoor resign as member of parliament?

tharoor, shashi, ipl, resign, lalit, controversi, kochi, modi, consor-
RLM-2step tium, embarrass, junior, minist, kerala, sweat, congress, manmo-
han, bcci, clear, lead, member

tharoor, shashi, ipl, pushkar, resign, lalit, controversi, sunanda,
FCRLM kochi, modi, bjp, parliament, involv, member, improprieti, consor-
tium, affair, explain, tweet, embarras

CARD query Why might the Webb space telescope replace Hubble?

hubble, space, telescope, james, light, pass, astronomy, atmosphere,
RLM-2step planet, figure, molecule, image, solar, current, technology, faint, far,
diameter, power, galaxy

hubble, space, telescope, james, exoplanet, chemical, astronomy,
FCRLM wavelength, planet, blue, revolve, diameter, solar, galaxy, dark,
faint, gold, pass, absorb, image

Table 5.3 that FCRLM was successful in estimating high likelihoods for terms
that are relevant to the aforementioned chain of events, such as ‘Sunanda’,

‘affair’, ‘tweet” and so on, which its counterpart, RLM-2step, was unable to
find.

We also show the merit of FCRLM on a topic from CARD, e.g. “Why might
the Webb space telescope replace Hubble?’. Similar to the PCRD topic, our
proposed FCRLM shows success in capturing terms that are highly relevant
to the chain of triggering causes of the query event. The important terms esti-
mated by FCRLM with high likelihood are bold-faced (see the bottom part of
the Table 5.3).

5.5 Conclusions

In order to address research question RQ-2 as introduced in Chapter 1, we
have hypothesized that the nature of causal relevance differs from that of tra-
ditional topical relevance. While documents exhibiting causal relevance might
share some term overlap with those deemed topically relevant to a query, we
expect that many of these documents will use a unique set of terms. These
distinct terms capture the various causes potentially contributing to the ef-
fects outlined in the query. On the basis of this hypothesis, in this chapter we
have proposed a novel model, Factored Causal Relevance Model (FCRLM),
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that seeks the potential chain of causes of an event using the idea of relevance
feedback.

From the experiments reported in Section 5.4, it is evident that pseudo rele-
vance feedback (PRF) based models can enhance average retrieval effective-
ness over a sufficiently large number of queries. However, PRF often intro-
duces a drift into the original information need, negatively impacting the per-
formance for certain queries. In tasks like causal retrieval, where cause-effect
relationships are nuanced, such drifts can significantly impair the overall effi-
ciency of an IR model. In these circumstances, selectively employing PRF -—
applying feedback only when it is likely to be beneficial — could help mitigate
this problem and enhance retrieval outcomes. The merit of selective feedback
motivates the rest of the thesis to focus on analyzing input queries to estimate
their specificity with respect to a collection. We hypothesize that if the query
is specific to any given collection, i.e. standard retrieval models are able to
separate out relevant documents from the rest of the collection, in this case ap-
plying feedback might impose some deviation from the original information
need. On the other hand, feedback might be significantly impactful if the in-
put query turns out to be not specific to the collection. With this hypothesis,
in the next chapter we aim to estimate the specificity of any given query in a
supervised way by proposing two data-driven query performance prediction
models. The merit of these proposed models further leads us to develop a se-
lective feedback model with the ability to reduce the penalty of blind feedback.
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CHAPTER

SIX

ESTIMATING QUERY SPECIFICITY

6.1 Introduction

This thesis introduces a unique notion of ad-hoc search, where the informa-
tion need is not explicitly linked to the query’s central topic, but instead ne-
cessitates identifying information that could have precipitated the event in the
query. In Chapter 5 we proposed an unsupervised pseudo-relevance feed-
back algorithm, FCRLM, which relies on the simple yet effective heuristic that
causally relevant terms are often not directly related to the core topic of the
query. To leverage such terms, we rely on high term sampling probabilities
from documents that lie further down the retrieved list of topically-relevant
documents, and high co-occurrence likelihoods with the query terms to filter
out potential noise. Experimental results indicate that FCRLM successfully
captures causal information at both document and sub-document levels, sur-
passing the performance of other feedback-based benchmarks. However, our
thorough analysis on per query performance both on PCRD and CARD dataset
(see Figure 5.4.6) leads us to conclude that the overall retrieval effectiveness
could have been enhanced if feedback was applied selectively only in cases

where the users’ queries required more clarity in the form of feedback.

From an IR point of view, this can be framed as the task of predicting the per-
formance of any input query with respect to a given collection, which is also
known as query performance prediction (QPP). The key idea here is if an in-
put query turns out to be specific to a given collection, i.e. the top ranked
list in response to that query holds a distinctiveness with respect to the rest
of the collection, then that query is likely to be adequate to capture the rele-
vant information on its own; if not then the initial input query is required to
be reformulated with the help of feedback. With this hypothesis, this chap-
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ter proposes two entirely data-driven supervised QPP approaches that aim to
improve the estimation of query specificity with respect to the existing QPP
approaches, and thus provides better accountability for selective feedback. It
is to be noted that we confirm the merits of our proposed models via rigorous
experiments on standard ad-hoc IR benchmark datasets which subsequently
leads us to design our selective feedback model for our causality intended
task. In the following sections, we detail different existing classical QPP ap-
proaches to give the reader a better understanding on this subject, followed by
recent researches on QPP and our proposed QPP methodologies.

6.2 Query Performance Prediction

Query performance prediction, which estimates the specificity of an input
query relative to a particular collection, has been an active area of research in
IR over a number of years (Carmel & Yom-Tov, 2010; Cronen-Townsend et al.,
2002, 2006; Hauff et al., 2008; Kurland et al., 2011; Shtok et al., 2010, 2012; Roit-
man, 2017; Thomas et al., 2017; Zhou & Croft, 2006, 2007). This interest stems
from the usefulness of QPP in gauging the satisfaction of queries” underlying
information needs without requiring the availability of relevance assessments.
This is particularly important because the retrieval effectiveness of IR models
can vary substantially for queries with different characteristics (Zendel et al.,
2019), whether they range from specific to general (Carterette et al., 2014), or
from short to verbose (Gupta & Bendersky, 2015).

Generally speaking, QPP is intended to automatically estimate the retrieval ef-
fectiveness of a query without relying on relevance judgments (Yom-Tov et al.,
2005; Diaz, 2007). Instead, a QPP method typically relies on two broad sources:
i) pre-retrieval information, which is available from the collection statistics of an
index; and ii) post-retrieval information, which becomes available only after a

top-set of documents is actually retrieved in response to a given query.

6.2.1 Pre-retrieval Approaches

A pre-retrieval estimator uses aggregated collection-level statistics (e.g., max-
imum or average of the inverse document frequencies of the query terms) as
a measure of the QPP estimate of an input query. This is based on the as-
sumption that queries with higher QPP estimates are likely to lead to a more
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topically-coherent set of top-documents (Hauff et al., 2008; He & Ounis, 2004;
Zhao et al., 2008), making them likely candidates for effective retrieval.

6.2.2 Post-retrieval Approaches

A post-retrieval estimator uses information from top-retrieved documents to
gauge their topical distinction from the rest of the collection, with a greater
difference suggesting potentially higher retrieval quality (Cronen-Townsend
et al., 2002). Various evidences extracted from the top-retrieved documents
have been shown to be useful in the context of different post-retrieval QPP
estimation methods. For instance, the KL divergence between the language
model of the top-retrieved documents and the collection model as employed in
Clarity (Cronen-Townsend et al., 2002), the aggregated values of the informa-
tion gains of each top-retrieved document with respect to the collection in WIG
(Weighted Information Gain) (Zhou & Croft, 2007), the skew of the RSVs mea-
sured with variance in NQC (Normalized Query Commitment) (Shtok et al.,
2012), and ideas based on the clustering hypothesis for a pairwise document
similarity matrix (Diaz, 2007).

Among the different ways of using retrieval status values (RSVs) for post-
retrieval QPP estimation, assessing the standard deviation of retrieval scores
has consistently been employed as an indicator of query performance (Pérez-
Iglesias & Araujo, 2010; Shtok et al., 2012; Tao & Wu, 2014). A higher standard
deviation has been linked to a reduced likelihood of query drift (Shtok et al.,
2012; Carmel et al., 2006). This has led researchers to improve the estimation
of standard deviation by applying a bootstrap sampling approach to the top-
retrieved list (Roitman ef al., 2017). Other work in this area revisited the esti-
mation of NQC, claiming that NQC computation can be derived as a scaled
calibrated-mean estimator (Roitman, 2019).

We now describe the technical details of the aforementioned post-retrieval
QPP approaches, which are relevant to work conducted later in this thesis.
In general, given a query, ), a post-retrieval QPP method estimates the prob-
ability of successfully retrieving useful information in response to ), P(S|Q),
as a function ® of the query itself and its top-k retrieved document set ).

Formally speaking;:

P(S|Q) = ®(Q, Mr(Q)), My = {Di}i_,. (6.1)

65



Existing post-retrieval QPP methods use different variants of the function
O(Q, Mi(Q)). We will outline some of these forms next.

Normalized Query Commitment (NQC) (Shtok et al., 2012) is a commonly
used post-retrieval QPP method that predicts the retrieval effectiveness of a
query using the standard deviation of the document scores. This follows the
hypothesis that a query with a well-defined information need is likely to lead
to a more non-uniform (heavy-tailed) distribution of the RSVs. To compute the
variance of the RSVs in NQC, the function ® of Equation 6.1 takes the form

dew ShL(P(DQ) - P(DIQ))?

Prnge(Q, Mi(Q)) POIC) 7

(6.2)

where P(D;|Q) denotes the similarity score of the document D; to Q, P(D|Q)
denotes the mean of the RSVs, and P(Q|C) is the similarity of () to the collec-

tion as computed by aggregating collection statistics over the query terms.

Scaled Calibrated NQC (SCNQC) (Roitman, 2019) is a generalization of NQC
that involves a number of parameters, both in terms of calibration and scaling.
The optimal values of these parameters are found via coordinate ascent or a

grid-based exploration. This measure is formally written as

k
1
Psenae(Q, Mi(Q)) == z Z

(6.3)
where the expressions P(D;|Q), P(D|Q), and P(Q|C) carry the same meaning
as in Equation 6.2. Additionally, « is an idf-weighting factor, 3 is a weighting

factor associated with the deviations in scores, and 7 is a calibration parameter.

Weighted Information Gain (WIG) (Zhou & Croft, 2007) uses the aggregated
value of the information gain of each top-retrieved document with respect to
the collection. The more topically distinct a document is from the collection,
the higher its gain will be. This means that the underlying hypothesis of WIG
is mostly similar to that of NQC. The average of these information gains rep-
resents the topical distinctiveness of the entire set of top documents. Formally,

® M@y L L ST 10 P(D|Q) — log P(d|C), (64
WIG(Q7 k(Q)) |Mk(Q>|D€;k(Q)\/@;0g ( ’Q) og (q, )7( )

where P(D|Q) denotes the score of a document D with respect to the query @,
and P(q|C) denotes the collection statistics of a query term ¢ € (). The original
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authors proposed the use of 1/4/|Q| as a normalization constant so that the
WIG scores across queries of different lengths become comparable.

Clarity (Cronen-Townsend et al., 2002) estimates a RLM distribution of term
weights from a set of top-ranked documents and then computes its KL diver-
gence with the collection model. The hypothesis is that higher the KL diver-
gence score, the higher the QPP estimate. For estimating the clarity score of a
query @, the generic function ® of Equation 6.1 takes the form

P(wka(Q))
P(wlfc)

def

Petariy (Q, Mi(Q)) == > P(w|fs,(g)) log

wGV]uk(Q)

(6.5)

where C denotes the collection, M}, (Q)) denotes the set of top- retrieved docu-
ments for a query @), and V), ) is the vocabulary of M;,(Q). The values 0, (o)
and 6 correspond to the relevance model estimated from A/, (Q)) and the col-

lection’s language model, respectively.

UEF (Shtok et al., 2010) differs from the estimators discussed so far in the sense
that it involves estimating a confidence score for a set of top documents itself.
This is based on the assumption that the value of the estimator itself is poten-
tially more reliable for certain sets of top-retrieved documents than others. As
a first step, the UEF method estimates the robustness of a set of top-retrieved
documents by checking the relative stability in the rank order before and after
relevance feedback (e.g., by RLM). The higher the perturbation of a ranked list
following the feedback operation, the greater the likelihood that the retrieval
effectiveness of the initial list was poor. This in turn suggests that a smaller
confidence should be associated with the QPP estimate of such a query. For-

mally,
def

Puer(Q, Mi(Q), ) = o(Mp(Q), Mr(0q))d(Q, Mir(Q)), (6.6)

where ¢(Q, M;(Q)) is a base QPP estimator (e.g. WIG or NQC), M (0g) de-
notes the re-ranked set of documents post-RLM feedback, the RLM being esti-
mated on the initially retrieved set of top-k documents M;,(()), and ¢ is a rank
correlation coefficient of two ordered sets (e.g. Spearman’s p or Kendall’s 7).

6.3 Recent QPP Research

In Section 6.2, we introduced the basic concept of a query performance pre-
diction (QPP) method, which estimates the likelihood of relevance of the top-
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retrieved documents by measuring the distinctiveness of the information need
of a query with respect to the overall topic distribution of the collection. In
other words, a QPP method evaluates the feasibility of separating the top-
retrieved documents from the rest of the collection based on topicality (Zhou
& Croft, 2007; Hauff, 2010; Shtok et al., 2012; Zamani et al., 2018a; Roy et al.,
2019). These techniques can enable an IR system to reflect on its retrieval qual-
ity for a specific query, even in the absence of relevance assessments (Diaz,
2007). Consequently, a QPP method can enable an IR system to use this esti-
mate to retrieve more relevant information by applying a number of additional
processing steps, executed either independently of user input or through di-
rect user engagement. Instances of user-agnostic processing include the selec-
tive application of pseudo-relevance feedback (Roitman & Kurland, 2019; Cao
et al., 2008). This strategy involves the automatic augmentation of a user’s ini-
tial query to retrieve more informative content during a subsequent retrieval
step (Lavrenko & Croft, 2001; Roy et al., 2016; Zamani et al., 2016; Montazeral-
ghaem et al., 2020). Methods requiring user engagement include query sugges-
tion (Mitra et al., 2014), or presenting the user with a list of potentially useful
query reformulations (Feild & Allan, 2013; Li et al., 2012; Rha et al., 2017; Ah-
mad et al., 2019). QPP methods are intended to allow a selective application
of these user-agnostic or user-aware processing steps to further improve the
quality of the retrieved information for those queries for which a QPP method
estimates a low likelihood of success in finding relevant information (Roitman
& Kurland, 2019).

Kurland et al. (2012) showed that the QPP task is equivalent to ranking clusters
of similar documents based on their relevance with respect to a query. More
recently, Zendel et al. (2019) investigated the use of alternative expressions of a
user’s information needs to improve QPP effectiveness, such as variants of an
input query, A study by Diaz (2007) reported that a spatial analysis of vector
representations of top-retrieved documents can provide useful cues for im-
proving QPP effectiveness. This concept is also incorporated into our data-
driven model, which employs convolutions over interaction matrices to har-
ness these spatial relationships. Other standard deviation-based approaches,
somewhat similar to NQC, have also been reported to work well for the QPP
task (Cummins et al., 2011; Cummins, 2014). Apart from the weakly supervised
neural approach of WS-NeurQPP (Zamani et al., 2018a), a QPP unsupervised
approach that uses cluster hypothesis of word vectors in an embedded space
was proposed by Roy et al. (2019).
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Recent research has highlighted a close association between the findings of
learning to rank (LTR) and QPP studies. Notably, it has been reported that the
set of features that are useful for LTR can also prove beneficial for QPP (Chifu
et al., 2018; Déjean et al., 2020). Moreover, the mechanism of two levels of in-
teraction (both between queries and documents, and across queries) has also
been reported to be useful for LTR (Mitra et al., 2017). In addition to the DRMM
approach (Guo et al., 2016), other work proposing end-to-end LTR approaches
have been proposed (Xiong et al., 2017; Zamani et al., 2018b). In particular,
the ColBERT model was introduced by Khattab & Zaharia (2020), which is a
fine-tuned BERT model (Devlin et al., 2019) using pairwise ranking loss. As
a precursor to end-to-end supervised approaches, unsupervised approaches
have addressed term semantics by using dense word vectors (Ganguly et al.,
2015; Roy et al., 2016; Yilmaz et al., 2019).

Motivated by the recent success of end-to-end deep neural models for ranking
tasks (Asadi et al., 2011; Cohen et al., 2018; Khattab & Zaharia, 2020; Dehghani
et al., 2017) and recommendation tasks (Ferrari Dacrema et al., 2019; Li et al.,
2017; Wu et al., 2019; Smirnova & Vasile, 2017), in this chapter we present two
different supervised end-to-end neural approach for QPP, which we refer to
as Deep-QPP and qppBERT-PL. Unlike unsupervised approaches that rely on
various statistics of document score distributions, our proposed approaches
are entirely data-driven. Deep-QPP is a term overlap-based encoding model
that leverages the word embedding interactions in the same way as the DRMM
model. In contrast, qppBERT-PL is a transformer-based encoding that uses
the BERT architecture which takes as input the contextual embeddings of the
terms for each pair comprising a query and its top-retrieved document. De-
tailed descriptions of the architecture of both Deep-QPP and qppBERT-PL are
provided in Sections 6.4 and 6.5, respectively.

6.4 CNN-based Predictor: Deep-QPP

As we mentioned earlier, in contrast to unsupervised approaches that rely on
various statistics of document score distributions, Deep-QPP is entirely data-
driven. Furthermore, unlike weakly supervised approaches (e.g. Zamani et al.
(2018a)), our approach does not rely on the outputs coming from different QPP
estimators. In particular, Deep-QPP leverages information from the seman-
tic interactions between the terms of a query and those in the top-documents
which it retrieves. The architecture of the model comprises multiple layers
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Figure 6.1:  While representation-based models rely on late interaction involving
shared parameters (left), interaction-based models, on the other hand, make use of
early interactions transforming paired instances into a single input.

of 2D convolution filters, followed by a feed-forward layer of parameters. In
the following sections, we explain the end-to-end architecture of Deep-QPP in
detail.

6.4.1 Deep-QPP Model Description

The key working principle of Deep-QPP is based on capturing term-semantic
interactions at two levels: first, at the intra-query level, to model the interaction
between the queries themselves and their top-retrieved documents, and then
at the inter-query level, to model their relative specificity measures.

6.4.1.1 Representation vs. Interaction

The fundamental difference between a representation-based model and an
interaction-based model (Guo et al., 2016) is illustrated in Figure 6.4.1. We
see that the former constructs a representation of each instance from a pair
of inputs, and then optimizes this representation so as to maximize the likeli-
hood of predicting a function involving this pair (see the left diagram in Figure
6.4.1). In contrast, an interaction-based model first transforms a paired data in-
stance into a single instance via an interaction operator & : R? x R? — R?. Here

d and p denoted the sizes of the raw and the transformed inputs, respectively.

We now discuss the type of interaction suitable for a supervised deep QPP
approach. For QPP, the objective function that should be learned from the
reference labels is a comparison between a pair of queries, @), and Q);. More
concretely, this comparison is an indicator of the relative difficulty between the
queries, i.e., whether (), is more difficult than (), or vice versa.

70



Y (Qaf Qb)

0(Q,®R(Q,)) |—'7 ® —L—1_ e@eRr@Q,)
(O]
Late Interaction Q,BR(Q,) Shared Q,DR(Qy)

parameters

T R3->R2 Reshapeto 2D  m: R3->R?

Early Interaction _ N\
.\

L R(Qa) = Dal/ Dazl'" DaM R(Qb) _ Dbll Dbz/___ DbM .k

Figure 6.2: Unlike an entirely representation-based or interaction-based model (Fig-
ure 6.4.1), our model combines the benefits of both early and late interactions. This
addresses: a) the interaction of the terms in the top-retrieved documents of a query
with the constituent terms of the query itself; b) the characteristic pattern of these in-
teractions to estimate the comparison function y(Q,, Q) between a pair of queries.
Each individual query-document interaction is indicated by a different color.

While pre-retrieval QPP approaches rely solely on information from a query
itself, it has been shown that post-retrieval approaches, which make use of
additional information from the top-retrieved documents of a query (Zhou &
Croft, 2007; Shtok et al., 2012), usually yield better performance. Therefore, we
also include information from the top-retrieved documents in the form of early
interactions. We refer to these as the intra-query interactions. The parameters
of these interactions are then optimized through a late interaction process be-
tween the queries, aiming to identify distinctive characteristics of these initial
interactions to determine which query within the pair is more straightforward.

An overview of our model is shown in Figure 6.4.1.

6.4.1.2 Query-Document Interactions

In unsupervised post-retrieval QPP approaches, the interaction between the
terms in a query and those of the top-retrieved set takes the form of statically-
defined functions. These measures aim to capture the distinctiveness of the
top-retrieved set with respect to the entire collection. For instance, NQC, as
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described by Shtok et al. (2012), uses the skewness of document retrieval scores
to assess this distinction. In contrast, WIG, introduced by Zhou & Croft (2007),
evaluates the information gain derived from the top-retrieved set compared
to the whole collection. The intra-query interaction shown in Figure 6.4.1 in-
volves computing an interaction between the terms of a query and those in
its top-retrieved set of documents. This output then acts as an input when

learning an optimal specificity function from the data.

Documents to consider for interaction. A common strategy for post-retrieval
QPP approaches that works well as a specificity estimator involves measur-
ing the distinctiveness between the set of documents positioned at the top
ranks and the remainder of the retrieved set. The standard deviation of the
document similarity scores in NQC (i.e., expected difference from the average

score) provides an estimate for the topic distinctiveness of the top set.

We incorporate this insight into our approach as follows. Instead of using only
a set of top-k documents, we use information from both the upper and the
lower parts of a ranked list. The objective here is to capture the differences in
the interaction patterns between a set of highly similar documents (found in
the upper part of a ranked list) versus those that are not as similar (located in
the lower part). As we shall see, this can provides useful cues for QPP.

Formally, we denote the set of documents considered for interaction with a
query Q as R(Q), which is comprised of a total of M = t 4+ b documents, in-
cluding the top-t and the bottom-b ranked ones. The index of the bottom-most
document considered for interaction computation is specified by a parameter
N. This means that the lower part of the ranked list, comprised of b documents
are, in fact, those ranked from N to N — b + 1. For example, a value of ¢t = 10
and b = 20 means that R(Q) = {D1,..., Do} U{Ds1,..., D1oo}-

In our experiments, we treat ¢t and b as hyper-parameters (see Section 6.4.7),
and restrict N to a value of 100 since it is unlikely that any evidence from
documents beyond the top-100 would be useful for the QPP task.

Interaction between each query term and a document. We now describe
how we compute the query-document interaction matrices for each document
D € R(Q) and a query Q. As a first step, we calculate the cosine similarities be-
tween the embedded representations of terms — one from the query @), and the
other from the document D¢{. As is the case with DRMM (Guo et al., 2016), the
distribution of similarities between the j™ query term ¢; and constituent terms

of Dy is then transformed into a vector of fixed length p. This is done by com-
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puting a histogram of the similarity values over a partition of p equally-spaced
intervals defined over the range of these values (i.e., the interval [—1,1)). The
B component (3 = 1,.. ., p) of this interaction vector indicates the number of

terms yielding similarities that lie within the 3" partition of [-1,1). That is

oDy,= S AU W 2y

< (6.7)

ot p q;llw| — p
where both q; € R? and w € R?, and the interaction vector ¢; & D¢ € R?, and
I[X] € {0,1} is an indicator variable which takes the value of 1, if a property
X is true and 0 otherwise.

Example 6.4.1. If p=4, the interval [—1,1) is partitioned into the set
{[-1,-0.5),[—0.5,0),[0,0.5),[0.5,1)}. For a 3-term document d, if the cosine
similarities are 0.2, —0.3 and 0.4 with respect to a query term ¢, then ¢ ®© d =
(0,1,2,0).

Collection statistics based relative weighting. The specificity of query terms
(i.e., collection statistics, such as IDF) contributes to the effective estimate of
QPP scores, both for pre-retrieval and post-retrieval approaches. Therefore,
we incorporate the idf values of each query term as a factor within the interac-
tion patterns to relatively weigh the contributions from the interaction vectors
¢; ® D{. In our proposed approach, we use a generalized version of Equa-
tion 6.7, where we incorporate the idf factor as a part of the interaction vector

components, i.e.,

NO' ) Z11[2(5—1)_1< G W 2 (68

(¢; ® Di)g = log( <
’ ng) St P lajllw| ~ p

where n(g;) denotes the number of documents in the collection containing the
j* query term ¢;, and Nj is the total number of documents in the collection.

Overall interaction between a query and a document. Each p-dimensional
interaction vector computed for the j™ query term forms the j* row of the
overall interaction matrix between the query @), and the i** document D{. This
matrix, Q, & D¢ € R**? is thus given by

Qo@D =[(qn @D, ..., (qx ® D)7, (6.9)

where £ is a predefined upper limit for the number of terms in a query. Zero-
padding is used for the row indices exceeding the number of query terms,

73



e, (g ® D) = {0}°,Vj > |Q.|. Referring back to Figure 6.4.1, each k x
p interaction matrix between a query (), and a document D; corresponds is
indicated by a colored rectangle, which are shown in the planes above the
queries and documents.

Interaction between a query and its top-retrieved set. Finally, each individual
document-query interaction matrix, when stacked up one above the other in
the order of the document ranks, yields an interaction tensor of order M x k x p.
Formally, we define:

Q. ® Dy

Qo ® R(Qa) = o (6.10)

Q. ® DY,

6.4.2 Layered Convolutions for QPP

After constructing the local interactions of a query with its top-retrieved set of
documents (i.e., the intra-query interactions), the next step is to extract convo-
lutional features from the 37 order interaction tensor, Q, ® R(Q,) € RM*#xb
between a query (), and its top-retrieved set R((),). To this end, we first need
to slice the 3" order tensor into separate matrices (2"¢ order tensors). We can
then apply 2D convolution to each of these to extract distinguishing features
from the raw data of query-document interactions.

Background on 2D convolution. Before describing how we slice the tensor
above into matrices, we summarize the architecture that we employ to ex-
tract useful features from the lower-dimensional slices of the interaction tensor.
For a detailed discussion of the 2D convolution operation, consult Rodriguez-
Sanchez et al. (2015). Formally speaking, if X € RM*F represents an input
data matrix, and if W € R¥*k (k, mod 2 = 1, i.e., k; an odd number) de-
notes the kernel weight matrix of the /'™ layer, conveniently represented as

0]
W, -

ally speaking, are given by

@ . .
-,0,...,W|}’)), then the outputs of layer-wise convolution, gener-

lk/2] [k/2] .
hg“l,z = f(l Z Z WZJhE’—H C-‘rj) (611)

i=—[k/2) j=—[k/2]

for each | = {1,...,L} (L being the total number of layers), where h/~!) ¢

RM*™ PV s the output obtained from the previous layer of the convolution

filter, with bV =X, MW =M and P = P. The function f is an aggregation
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Figure 6.3: Our proposed end-to-end QPP model comprising a Siamese network of
shared parameters of layered convolutional feature extraction, followed by either i)
merge (concatenation) and a fully connected (FC) layer with a Sigmoid loss for pair-
wise testing (Equation 6.13) yielding a binary comparison indicator between a pair, or
ii) a linear activation layer with pairwise hinge loss for pointwise testing yielding a
score for a given query (Equation 6.14). Since the interaction for MDMQ and SDSQ
are matrices with a single row only, the two layers of convolution filter sizes for these
approaches are 1 x 5and 1 x 3 (see Section 6.4.3).

function that, generally speaking, progressively reduces the size of the convo-
lutional representations, h¥, across layers. Aggregation methods commonly
applied in computer vision include the MaxPooling (Christlein et al., 2019) and
AvgPooling (Shen ef al., 2014) functions.

Late interactions with convolutional features. A more detailed view of the
late interaction across a query pair is shown in Figure 6.4.2. Referring to the
notation from Equation 6.11, we employ L = 2 convolution layers, and use
k1 = 5 and ky = 3 (i.e., a 5x5 filter for the first layer and a 3x3 for the sec-
ond one). The aggregate function of each layer I, f), is set to the MaxPooling

operation.

After extracting the convolutional features for each query vs. top-documents
interaction tensor (shown as the two cuboids towards the extreme left of Fig-
ure 6.4.2), we employ the standard practice of merging the convolutional filter
outputs of each query into a single vector (shown as the ‘merge” operation)
(Wang et al., 2020; Byerly et al., 2020). Following the merge operation, which
now combines abstract features extracted from the local interactions of the two
queries into a single vector, we apply a fully connected dense layer. Depend-
ing on whether we test the network in a pointwise or pairwise manner, the
loss function is set to either the Sigmoid function or a function that seeks to

maximize the accuracy of the comparison function between pairs. Section 6.4.4
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provides more details on the network training process.

6.4.3 Reshaping the Interaction Tensor

There exists a number of different choices for slicing up the interaction tensor
of Equation 6.10 into a set of matrices for the purpose of separately applying
2D convolution on each and then combining the features. This is shown as
the reshaping function 7 : R® — R? in Figure 6.4.2. We now discuss each alter-
native, examining their respective strengths and weaknesses in the context of
QPP.

In our nomenclature, we categorize reshaping functions based on whether the
information across i) top-retrieved documents is merged together, or ii) query
terms are merged together. A part of the name thus uses the characters D to
denote the top-retrieved set, and Q to denote query terms. To indicate ‘merg-
ing’, we use the letter ‘M" and to denote its counterpart, we use the letter ‘s’
(separate). For instance, the name MDMQ means that the information from both
top-documents and query terms are merged together.

Merged Documents Merged Query-terms (MDMQ). This is the most coarse-
grained way to reduce the dimensionality of the interaction tensor of order
3 (Equation 6.10). It involves reducing the M x k x p tensor to a flattened
vector of dimensionality M kp, which can still be imagined to be a matrix of di-
mension 1 x Mkp, thus allowing 1D convolutions to be applied. This method
extracts abstract features at an aggregate level rather than for individual doc-
uments separately. However, this may not be desirable because, in standard
QPP methods such as WIG and NQC, an individual contribution from each
document score is responsible for the predicted specificity measure.

Separate Documents Merged Query-terms (SDMQ). This corresponds to the
most intuitive strategy for grouping an interaction tensor, Q® R((), by consid-
ering the i*" row foreachi = 1,..., M, Q & D;, as a matrix of dimension k x p.
This allows the extraction of abstract features from each document separately
in relation to the whole query. Thus, it takes into account the compositionality
of the query terms while simultaneously avoiding the conflation of informa-
tion across documents. This approach is consistent with the implementation
of most unsupervised post-retrieval QPP methods in practice.

Merged Documents Separate Query-terms (MDSQ). Contrary to grouping
the interaction tensor row-wise, for this method we slice out the constituent
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matrices column-wise. Each matrix is thus of dimension M x p, and there
are a total k of them, on each of which we apply 2D convolution for feature
extraction. This QPP method thus does not take into account the composi-
tionality of the constituent query terms while considering the semantic inter-
actions. Rather it treats the whole set of top-retrieved documents in an aggre-
gated manner, which is also somewhat counter-intuitive because a document
at the very top rank should be treated in a different manner from the very
bottom one, i.e. the one at M rank.

Separate Documents Separate Query-terms (SDSQ). This is the most fine-
grained approach, which considers every interaction vector between the ;™
query term and :*" document (see Equation 6.8 as a separate candidate for con-
volutional feature extraction. Each such interaction vector between a query-
term and a document is of dimension p and there are a total of Mk such vec-
tors. As with the MDMQ approach, we apply 1D convolution on these vectors.

A point to note is that, although Figure 6.4.2 shows the convolution filters as
5 x 5 and 3 x 3, for MDMQ and SDSQ approaches, these filters are of size 1 x 5

and 1 x 3 respectively.

6.4.4 Deep-QPP Training

In Chapter 3 we empirically confirm the inadequacy of traditional short
queries to capture causal relevance. To overcome this problem, we apply a
relevance feedback approach to expand queries with causally related terms,
which proved to be effective in Chapter 5. However, Chapter 5 also illus-
trates that expansion can often cause query-drift (see Figure 5.4.6). As a re-
sult, it frequently requires performing a comparison between a pair of queries
to determine which one is more specifically relevant to the collection. Such a
decision-based framework is likely to be helpful in minimizing query-drifts.
The later part of this thesis, in fact, offers one such decision-based pipeline.
On the other hand, traditional pre/post-retrieval QPP estimators rank a list
of input queries based on their individual specificity score to the collection;
the higher the score, the better. Such query ranks are useful when judging the

retrievability of IR models.

With this motivation, Deep-QPP network in Figure 6.4.2 is trained based on
instances of query pairs with two different objectives — pointwise and pairwise.
In the pairwise case, the network directly learns the comparison function, i.e.,

a binary indicator of the anti-symmetric relation between a query pair. On
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the other hand, the pointwise objective aims to predict a QPP score, instead
of the relative ordering of specificity between a pair. Before describing these
objectives, we first provide details around obtaining the data instances and the

reference labels.

Instances and ground-truth labels. Given a training set of queries Q =
{Q1,...,Qn}, we construct the set of all unordered pairs of the form (Q,, Q)),
such that Va,b < m and b > a. The reference label, y(Q;,@Q,), of a paired
instance is determined by a relative comparison of the retrieval effectiveness
obtained by a system with a target metric. The retrieval effectiveness, in turn,
is computed with the help of the available relevance assessments. Formally
speaking, if M denotes an IR evaluation measure (e.g., average precision or
AP), which is a function of i) the known set of relevant documents - R(Q) for
a query () € Q, and ii) the set of documents retrieved with a model A (e.g.,
LM-Dir (Zhai & Lafferty, 2001)), then

Y(Qa; Qp) = sgn(M(Qa; R(Qa)) — M(Qs; R(Q))), (6.12)

where sgn(z) = 0if z < 0 or 1 otherwise. For all our experiments, we use
either AP@100 or nDCG@20 as the target metric M. As the IR model, A, we
employ LM-Dir with the smoothing parameter ;¢ = 1000 following QPP litera-
ture (Shtok et al., 2012). We emphasize that the results of our experiments are
mostly insensitive to the choice of either target metric or IR model.

Pairwise objective. For this objective, the Deep-QPP model is trained to max-
imize the likelihood of correctly predicting the indicator value of the compar-
ison between a given pair of queries. The purpose here is to learn a data-
driven generalization of the comparison function. During the testing phase,
the model outputs a predicted value of the comparison between a pair of
queries unseen during the training phase. The output layer for the pairwise
objective thus constitutes a Sigmoid layer, predicting values of y(Q,, Q) (Equa-
tion 6.12) as a function of the network parameters denoted as §(Q,, Qu; O).
During the training phase, the parameter updates seek to minimize the stan-

dard squared loss between the ground-truth and the predicted labels:
L(Qtﬁ Qb> - (y(Qaa Qb) - g(@(u Qb7 @))2 (613)

Pointwise objective. For pointwise testing, the network takes a single query
() as a test input, rather than a pair of queries. Instead of predicting a binary

indicator comparison, the network outputs a score §(Q; ©) that can be used as
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Table 6.1: Characteristics of the datasets used for Deep-QPP experiments.

Collection #Documents TopicSet |Q| Avg.Qlen Avg. #Rel
Disks 4 & 5 528,155 TREC-Rb 249 2.68 7121
MS MARCO Passage 8,841,823 TREC-DL 79 2.42 52.34

an estimated measure of specificity of ). To allow for pointwise testing, the
output from the shared layer of parameters goes into a linear activation unit
predicting a real-valued score §(Q; ©), which is a function of one query (rather
than a pair). This can be seen in the bottom-right part of Figure 6.4.2. Instead
of training the network on a merged representation of a query pair, the loss
function includes separate contributions from the two parts of the network
corresponding to each query. The objective here is to update the parameters
for maximizing the comparison agreements between the reference and the pre-

dicted scores. Specifically, we minimize the following hinge loss:

L(Qa; Q) = max(0, 1 — sgn(y(Qa, Qb) - (§(Qa; ©) — §(Qr; 0)))) (6.14)

6.4.5 Experiments

Collections. We evaluate Deep-QPP on two standard ad-hoc IR test collec-
tions, namely TREC Robust (comprised of news articles) and the MS MARCO
passage collection (Nguyen et al., 2016), which comprises of over 8.8M pas-
sages, along with a set of over 500K topics and relevant document pairs. For
evaluation, we used the depth-pooled queries of TREC DL tasks from 2019 and
2020 (Craswell et al., 2019, 2020). Table 6.1 provides an overview of the data

used in the experiments.

Train and test splits. Since our proposed Deep-QPP method is a supervised
one, we first require a training set of queries to learn the model parameters
and then a test set for evaluating the effectiveness of the model. Following the
standard convention in the literature (e.g. Zamani et al. (2018a); Shtok et al.
(2012); Zendel et al. (2019)), we employ repeated partitioning (30 times) of the
set of queries into 50:50 splits and report the average values of the correlation

metrics (see Section 6.4.7) computed over the 30 splits.

A major difference in our setup, in contrast to existing QPP approaches, is the
use of a training set. While the training set for unsupervised approaches serve
the purpose of tuning the hyper-parameters of a model by grid search, in our

case, it involves updating the learnable parameters of the neural model using a
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method such as stochastic gradient descent.

Hyper-parameter tuning. The most common hyper-parameter for existing un-
supervised QPP approaches is the number of top-M documents considered
when computing the statistics on the document retrieval scores, as in NQC
and WIG, or to estimate a relevance feedback model, as in Clarity and UEF
(see Section 6.4.6 for more details). We tune this parameter via grid search on
the training partition. Following the setup of Zamani et al. (2018a), the values
used in grid search were {5, 10, 15, 20, 25, 50, 100, 300, 500, 1000}.

6.4.6 Methods Investigated

We compare our supervised Deep-QPP approach with a number of standard
unsupervised QPP approaches, and also a more recent weak supervision-
based neural approach (Zamani et al., 2018a). We do not include QPP methods
that leverage external information, such as query variants (Butman et al., 2013).
Using query variants has been shown to improve the effectiveness of unsuper-
vised QPP estimators and it is also likely that including them in our supervised
end-to-end approach could lead to further improvements. However, since the
main objective of our experiments is to investigate whether a deep QPP model
can outperform existing methods, we leave the use of external data for future
exploration. Furthermore, we have excluded pre-retrieval QPP approaches,
like Average IDF or Max IDF, as numerous previous studies have shown that
post-retrieval approaches tend to outperform them (Cronen-Townsend et al.,
2002; Zhou & Croft, 2007; Shtok et al., 2012; Zamani et al., 2018a).

Unsupervised approaches. We consider a number of baselines that solely
make use of term weight heuristics to measure the specificity estimates of
queries. These methods mainly differ in the way in which they calculate the
similarity of the top-retrieved set of documents from the rest of the collection.
The unsupervised baselines (Clarity, NQC, WIG, UEF) to which we compare

our proposed approach were previously discussed in Section 6.2.2.

Supervised approaches. Our choice of supervised baselines is guided by two
objectives: first, to show that (strong) supervision using the ground-truth of
relative query performance is better than the existing approach of weak su-
pervision on QPP estimation functions (Zamani et al., 2018a), and second, to
demonstrate that a mixture of both early and late interactions is better than
purely content-based ones (see Figures 6.4.1 and 6.4.1). Specifically, we con-
sider the following:
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¢ Weakly Supervised Neural QPP (WS-NeurQPP) (Zamani et al., 2018a).
The key difference between WS-NeurQPP and Deep-QPP lies in the
source of information used and also the objective of the neural end-
to-end models. The former uses weak supervision to approximate the
scores of individual QPP estimators so as to learn an optimal combina-
tion. As inputs, it uses the retrieval scores, along with the word embed-
ded vectors. However, unlike our approach, WS-NeurQPP does not con-
sider the interactions between terms, making it a purely representation-

based approach.

¢ Siamese Network (SN). This approach is an ablation of the Deep-
QPP model (Figure 6.4.2). Here instead of feeding in the interaction
tensors between a query and its top-retrieved documents, we simply in-
put the dense vector representations of queries in pairs. We experiment
with two different types of dense vector inputs - one where we used pre-
trained RoBERTa vectors (Liu et al., 2019) obtained using the Hugging-
Face library (web, 2021b), and the other, where we used the sum of the
skip-gram (Mikolov et al., 2013) word embedded vectors (trained on the
respective target collections) of constituent terms as the dense represen-
tation of a query for input. We name these two ablations as SN-BERT
and SN-SG, respectively.

* No Intra-Query Interaction. As another ablation of Deep-QPP, we only
use the interaction between the terms of the query pairs themselves. The
interaction tensor between a pair of queries is a 2" order tensor, i.e., a
k x p matrix. This is a purely interaction-based method, and in princi-
ple, is similar to DRMM (Guo et al., 2016), with the added layer of 2D

convolutions. Thus, we denote this baseline as DRMM.

6.4.7 Experimental Settings

Implementation. We used the Java API of Lucene 8.8 (luc, 2021) for index-
ing and retrieval. This library is also used to implement the existing unsu-
pervised QPP baselines. Both Deep-QPP and the supervised baselines were
implemented using Keras (ker, 2021). The code for our proposed method is

available for research purposes'.

Metrics. As discussed in Section 6.4.4, the Deep-QPP model can be trained

Ihttps://github.com/suchanadatta/DeepQPP.git
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using either the pairwise and the pointwise objectives. The pointwise test use-
case is the standard practice in existing QPP studies, where given a query,
a QPP model predicts a score indicative of the retrieval effectiveness. For this
use-case, we evaluate the effectiveness of the QPP methods with standard met-
rics used in the literature: a) Pearson’s-r correlation between the AP values
of the queries in the test-set and the predicted QPP scores; b) a ranking cor-
relation measure, specifically Kendall’s 7 between the ground-truth ordering
(increasing AP values) of the test-set queries and the ordering induced by the
predicted QPP scores. For additional information about these metrics, please
refer to Appendix A.4.2.

In the pairwise case, the network is presented with pairs of queries from the
test set, for which it then predicts binary indicators of the relative order of
queries within the pairs. As a QPP effectiveness measure, we report the av-
erage accuracy of these predictions, i.e., whether a predicted relation as given
by the Sigmoid output from Deep-QPP, y(Q,, Qs; ©), matches the ground-truth
that AP(Q,) < AP(Qs). Since §(Q., @p; ©) € [0, 1], we binarize this value to
{0, 1} with the threshold of 0.5, thus indicating a prediction of whether @, is a

more difficult query than @, or vice versa.

Deep-QPP hyper-parameters. For both our proposed method and for the se-
mantic analyzer component of the weakly supervised baseline WS-NeurQPP,
we use skip-gram word vectors of dimension 300 trained on the respective
document collections with a window size of 10 and 25 negative samples. An-
other hyper-parameter in Deep-QPP is the number of intervals (bins) p used to
compute the interactions in Equation 6.8. Both in Table 6.3 and 6.3, we report
results with p = 30 (as per the settings of the DRMM paper (Guo et al., 2016)).
We later investigate the effect of varying this parameter on the effectiveness of
Deep-QPP (see Figure 6.6).

We observed that, after conducting a number of initial experiments, excluding
the idf of terms in the interaction tensors consistently led to worse results than
when including them. Therefore, in all our experiments with Deep-QPP, we
use the idf-weighted interactions as given in Equation 6.8. Another hyper-
parameter used in the Deep-QPP model to prevent overfitting is the dropout
probability, which we initially set to 0.2 based on our experimental findings.
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Table 6.2: A comparison of the QPP effectiveness between Deep-QPP, and a set
of unsupervised and supervised baselines (shown in the 1** and the 2"¢ groups, re-
spectively). The average accuracy and the correlation values (see Section 6.4.7) of
Deep-QPP over the best performing baseline - WS-NeurQPP, are statistically signifi-
cant (t-test with over 97% confidence).

Metric : AP@100
TREC-Robust TREC DL

Methods Pairwise Pointwise Pairwise Pointwise

Accuracy  P-r K- Accuracy P-r K-r

Clarity 0.6251 0.4863 0.3140 0.6120  0.1911 0.0641
NQC 0.6720  0.5269 0.4041 0.7030  0.2654 0.1518
WIG 0.6613  0.5440 0.4279  0.6829  0.2492 0.1920
UEF 0.6941 0.5523 04154 0.7217 03162 0.1959
SN-BERT 0.6613  0.5208 0.4169  0.6902  0.2317 0.1441
SN-SG 0.6349 05112 0.3987  0.6273  0.2110 0.1154
DRMM 0.5871 0.4730 03710 0.6023  0.2014 0.1141
WS-NeurQPP 0.8123  0.7215 0.5090  0.7727  0.5192 0.2828

Deep-QPP (MDMQ)  0.7857  0.6988 0.4981 0.7414  0.4636 0.2495
Deep-QPP (SDSQ) 0.7210  0.6303 0.4018  0.6844  0.4208 0.2401
Deep-QPP (MDSQ) 0.8006  0.7203 0.4989  0.7426  0.4840 0.2575
Deep-QPP (SDMQ) 0.8420  0.7404 0.5434 0.8045 0.5532 0.3130

6.4.8 Results and Analysis

Table 6.2 and 6.3 present the QPP results for all the methods considered in
our experiments. Firstly, we observe that the existing supervised approach
for QPP, WS-NeurQPP, outperforms the unsupervised approaches (NQC, WIG
and UEF), which is consistent with the observations reported by Zamani et al.
(2018a).

Secondly, we see that the ablation baselines of Deep-QPP involving a purely
representation-based approach (SN-BERT and SN-SG), or a purely interaction-
based one (DRMM), perform worse than Deep-QPP. This is primarily be-
cause these baselines lack the additional source of information—interactions
of queries with the top-retrieved set of documents, which Deep-QPP is able
to leverage. This observation also reflects the fact that post-retrieval QPP ap-
proaches, incorporating additional information from top-documents, typically
outperform their pre-retrieval counterparts (Shtok et al., 2012).

Third and most importantly, it is apparent that Deep-QPP outperforms WS-
NeurQPP, which confirms the hypothesis that explicitly learning the relative
specificity of query pairs with an end-to-end (strongly) supervised model is
better able to generalize than a weakly supervised approach which learns an

optimal combination of statistical predictors.

Another observation is that the SDMQ version of the reshaping function 7 :
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Table 6.3: Similar to Table 6.2, we compare the QPP effectiveness of Deep-QPP with
a set of unsupervised and supervised baselines. The only difference here is that the
QPP effectiveness is evaluated based on nDCG@20.

Metric : nDCG@20
TREC-Robust TREC DL

Methods Pairwise Pointwise Pairwise Pointwise

Accuracy  P-r K-t Accuracy  P-r K-r

Clarity 0.6118 03529 0.2462 0.6101  0.0923 0.0714
NQC 0.6689 04261 03017 0.6916  0.3105 0.1987
WIG 0.6629  0.3915 0.2407 0.6710  0.2780 0.1823
UEF 0.6792  0.5029 0.3510 0.6925 0.3320 0.1854
SN-BERT 0.6529  0.5023 0.3624  0.6724  0.2241 0.1334
SN-SG 0.6147 04736 0.3561 0.6231 0.2049 0.1283
DRMM 0.5629  0.4038 0.3119 0.6004  0.1927 0.1201
WS-NeurQPP 0.7973  0.5913 0.4126  0.7614  0.3928 0.2337

Deep-QPP (MDMQ)  0.7632  0.5649 0.3619  0.7189  0.3509 0.2185
Deep-QPP (SDSQ) 0.7284  0.5112 0.3065 0.6753  0.3124 0.2014
Deep-QPP (MDSQ) 0.7824  0.5601 0.3245 0.7037  0.3518 0.2100
Deep-QPP (SDMQ) 0.8371  0.6315 0.4614 0.7903  0.4431 0.2554

R? — R? (see Section 6.4.3 and Figure 6.4.2) turns out to be the most effective,
as we might expect. This also conforms to the way in which unsupervised
QPP approaches generally work, i.e., by first making use of the information
from each top-retrieved document (e.g. its score in NQC and WIG) and then
computing an aggregate function over them (e.g. their variance in NQC, and

relative gains in WIG).

To further compare Deep-QPP to WS-NeurQPP, we report the training-time
efficiency of both approaches in Figure 6.4. Due to a much larger number
of trainable parameters and larger input dimensionality (dense word vectors
instead of interactions between the dense vectors), WS-NeurQPP takes signifi-
cantly longer to execute compared to Deep-QPP. The total number of trainable
parameters for WS-NeurQPP is 4.7M, approximately 2.5X the number of pa-
rameters in Deep-QPP (1.9M).

Hyper-parameter sensitivity of Deep-QPP. Figure 6.5 demonstrates that using
the top-10 and bottom-10 documents for interaction computation (as explained
in Section 6.4.1.2) yields the best results. This suggests that selecting an appro-
priate number of documents is important for learning the QPP comparison
function, avoiding both overly small and overly large document sets.

Figure 6.6 shows the effects of different bin sizes p (as used in Equation
6.8), when computing the interactions between queries and the documents re-
trieved at top and bottom ranks. A value of 30 turned out to be optimal, which

is similar to the previously reported optimal value for interaction computation
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Figure 6.4: Deep-QPP, in addition to being more effective than WS-NeurQPP, also
outperforms WS-NeurQPP in terms of training time due to the much smaller number
of parameters (1.9M vs. 4.7M).
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Figure 6.5: Sensitivity of Deep-QPP to the number of top (¢) and bottom (b) docu-
ments included for interaction computation on QPP effectiveness (see Section 6.4.1.2).
The limiting case of (¢,b) = (0, 0) corresponds to the situation when we simply use the
interaction between query terms themselves (i.e., the DRMM baseline).
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in the LTR task (Guo et al., 2016).

6.4.9 Discussion

Our proposed method Deep-QPP is trained on pairs of queries to capture their
relative retrieval performance. The main disadvantage of a pairwise strategy
is that the number of pairs is quadratic with respect to the training set size,
thus causing a significant increase in training time. As a solution, Arabzadeh
et al. (2021) showed that a pointwise approach, which makes use of a cross-
encoding based interaction of the BERT vectors of constituent query and doc-
ument terms (an architecture that has been shown to be effective for passage

and document relevance ranking (Nogueira & Cho, 2019; MacAvaney et al.,
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Figure 6.6: Sensitivity of Deep-QPP with respect to the bin-size, p.
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2019)), can perform well at QPP in practice. Instead of predicting a relative
measure of query difficulty across a pair, the training objective in this case
seeks to directly predict a retrieval effectiveness measure (e.g. MRR@10).

Motivated by the success of BERT-based QPP models, such as BERT-
QPP (Arabzadeh et al., 2021), in the next section we propose a groupwise query
estimation framework that combines both cross-query and cross-document in-
formation across groups to learn the query performance predictor. Similar to
BERT-QPD, this is also a regression-based model that predicts individual score
for each query-document pair. However, the final QPP score per query is ob-
tained by aggregating predictions in each group. Both of our proposed CNN
and BERT-based QPP approaches played the role of building blocks of our
proposed selective feedback model in the next chapter (i.e. Chapter 7).

6.5 Transformer-based Predictor: qppBERT-PL

6.5.1 Model Description

We now provide the detailed architecture of our proposed transformer-based
query performance predictor. The objective of the model is to predict the re-
trieval effectiveness or QPP score for a query (), as a function of the query itself
and the ordered set of top-retrieved documents M), = {D;, D,, ..., D} in the
form ¢ (Q, M) — R.

Network architecture. To model the input M}, as an ordered set of documents,
we make use of a recurrent neural network to encode the documents in se-
quence. Specifically, we use LSTM units (Hochreiter & Schmidhuber, 1997;
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Chen et al., 2017) for modeling the sequence (see Figure 6.5.1). As discussed
previously, an important decision choice with QPP estimators relates to the
size of the top-retrieved document set. In the case of many popular QPP meth-
ods, such as NQC and WIG, these have been reported to work well when us-
ing information from the top-100 documents. Encoding such long sequences
of documents, which are themselves sequences of words, is likely to intro-
duce noise into the process. Consequently, we segment the ordered set M;

into equal sized partitions (chunks) of smaller ordered sets, namely

Lk/p)
My = U (MY ={Dy,...,D,}U.. {Dj_ps1,...,Di}, (6.15)

i=1

where p(< k) is the size of each partition. Each partitioned list of documents
M,gi) = {D;,Dit1...,D;4,}, along with the query @, constitutes an input in-
stance. We employ a BERT-based cross-encoder architecture to model the in-
teractions between the query and the document terms, followed by an LSTM-
encoded representation of this interaction sequence (see Figure 6.5.1). For-
mally,

®Q7D1} = BERT([CLS](]O, qi, .- - ,%Q\[SEP]dl, dg, e ,d‘D”)
®Q7M£i) = LSTM(QQ,D“ ce 70Q7D’L'+p; QLSTM) (616)

§(Q. M") = SOFTMAX (676 ),

where 057y and ¢ denote the parameters corresponding to the LSTM and
a fully connected layer, respectively, O p, denotes the BERT (Devlin et al.,
2019) encoding of the query-document pair (@, D;), and 9(Q, M, ,gl)) denotes the
predicted output through a SOFTMAX layer.

We name our proposed method as qppBERT-PL, based on the following nam-
ing convention. Since the model makes use of a sequence of chunked docu-
ments, it can be categorized as a listwise-document approach, which is why
we include the suffix ‘L’ (denoting Listwise). On the other hand, since we in-
corporate the relative position (rank) information of the documents (so as to
distinguish one input chunk from another), we include the suffix ‘P’ in the
name to denote the Position or absolute ranks of documents.

Incorporating rank embeddings. Since we provide the information from the

() each of size p, we require a way

top-k retrieved list as separate chunks A/,
to establish a link between these input chunks. A convenient way of doing

this is by incorporating positional information into the embedded documents
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Figure 6.7: Schematics of our proposed neural model ‘qppBERT-PL’ for a given
query @ and a list of top-ranked k documents, { D1, D, . .., Dy} partitioned into |k/p]
chunks, each of size p. The query-document cross-encoded representations (O(Q, D;))
for each chunk along with the rank of a document in the form of BERT positional
embeddings (Devlin et al., 2019), are then encoded via LSTMs (to represent each chunk
as a sequence rather than a set of documents). A fully connected layer (FC) then
follows terminating at a p + 1 dimensional Softmax representing the probability of
finding r relevant documents within this p-sized chunk (r € {0,1,...,p}). Through
our experiments, we show that (1) top-£ chunking, (2) rank embedding, (3) sequence
modeling, and (4) count prediction/aggregation are all important components of our
approach.

(©¢.p;)- We borrow an idea from the BERT model itself, which uses positional
embeddings to indicate the relative positions of each token in the input text.

Similarly, for a chunk M, ,5“

comprised of documents {D;, D;+1, ..., D}, we
add an embedding tied to i (i.e., the document’s rank) to ©, p, representation.
It is important to note that our objective here is to model the sequence of doc-
uments, and not the sequence of the words themselves, as is the case in many

NLP tasks.

Training objective. The ground-truth values that the network seeks to predict
correspond to the number of relevant documents in each partition A/, ,gi), which
is an integer between 0 (none of the documents are relevant) and p (all docu-
ments are relevant). To account for the likelihood of these p+ 1 possible integer
(categorical) values, we model the output layer as a p+ 1 dimensional Softmax.

Inducing query ranks from the estimator. As a final step, we compute a
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Table 6.4: Average number of relevant documents for each set of queries used for the
evaluation of qppBERT-PL.

MS MARCO Dev TREC-DL'19 TREC-DL'20

#Queries 6980 43 54
Avg #Rel 1.1 58.2 38.7

weighted average from the outputs of the network, y(Q), M ,ii)), predicted for
each p-sized partition of the top-k documents to obtain an aggregated score.
The rationale for using a weighted average is to favour the predicted relevance
contributions from the chunks towards the top of the ranked list, in compari-
son to the ones that are at the bottom. Formally, we compute:

QM) = ““E/:J §(Q. M)

- 2
=1

(6.17)

The resulting ¥(Q, My) scores are subsequently used to sort the set of input

queries in descending order.

6.5.2 Experimental Setup

Datasets. We conduct experiments on the well-known MS MARCO passage
collection (Nguyen et al., 2016), which comprises of over 8.8M passages, along
with a set of over 500K topics and relevant document pairs. To evaluate
the results of our QPP experiments, we follow the approach of Arabzadeh
et al. (2021), using the validation set of relevance-assessed queries, commonly
known as “Dev”. As in Arabzadeh et al. (2021), we report our experiments
on the queries used in the TREC DL tasks from 2019 and 2020 (Craswell et al.,
2019, 2020). Table 6.4 provides an overview of the three datasets used to eval-

uate qppBERT-PL.

In contrast to the MS MARCO queries, those appearing in the TREC DL tasks
use depth pooling for relevance assessment, and hence are associated with
a higher number of relevant documents, on an average, per query. TREC DL
uses a graded form of relevance. For our experiments, as per the official metric
used in the track, we treat only the relevance level of 2 when computing the
AP values. In line with prior work, we estimate the performance of BM25
results and we perform indexing and BM25 retrieval using PISA (Mallia et al.,
2019). For QPP evaluation, we employ two widely-used correlation measures:
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Pearson’s-r and Kendall’s-7 (denoted as P-r and K-7, respectively). While the
former is a standard statistical correlation measure between two sets of values,
the latter is a measure of the relative number of agreements in ranking order

between two ordered sets of values.

Unsupervised baselines. As reported in Table 6.2 and 6.3, we in-
clude a number of traditional unsupervised QPP approaches as base-
lines: Clarity (Cronen-Townsend et al., 2002), Weighted Information Gain
(WIG) (Zhou & Croft, 2007), Normalized Query Commitment (NQC)
(Shtok et al., 2012) and UEF (Shtok et al., 2010), a method which applies a
base QPP estimator to aggregate estimates from a number of subsets sampled
from the top-retrieved set. The contribution from each subset depends on
the relative stability in the rank order before and after relevance feedback
with that set. As the base estimator for UEF, we used NQC, since it yields
the most effective results compared to other post-retrieval estimators. In
addition, we employ a generalized model of NQC which claims that NQC
computation can be derived as a scaled calibrated-mean estimator, namely
SCNQC (Roitman, 2019). All of these QPP baselines are discussed in detail in
Section 6.2.2.

In line with the work by Arabzadeh et al. (2021), we use a small subset to
tune the hyper-parameters of the unsupervised baseline QPP approaches. This
comprised of 100 queries randomly sampled from the MS MARCO Dev topic
set. The two main tuned hyper-parameters were the number of top-retrieved
documents considered for the post-retrieval QPP methods (such as NQC, WIG,
and SCNQC), and the number of documents for relevance feedback in UEE.
The baseline method SCNQC involves a number of hyper-parameters related
to scaling and calibrating the NQC estimation, which we tune by grid search

similar to Roitman (2019).

Supervised baselines. As our first supervised point of comparison, we con-
sider WS-NeurQPP (Zamani et al., 2018a). Unlike BERT-QPP and our proposed
approach, this method is not an end-to-end supervised model since it requires
inputs in the form of the outputs from several QPP estimators. It then em-
ploys weak supervision to learn an optimal combination of the estimators. As
the next supervised baseline, we include the cross-encoder version of BERT-
QPP (Arabzadeh et al., 2021) (as it outperforms the bi-encoder version). We
refer to this baseline as BERT-QPP.

Ablations derived from the baseline BERT-QPP. Arabzadeh et al. (2021) only
used a single document to train a regression model for predicting the target
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Table 6.5: A summary of extensions of the originally proposed BERT-QPP method
(Arabzadeh et al., 2021), which act as ablations in our study. The original BERT-
QPP method is included as one of our baselines. Prediction type|0, 1] indicates a re-
gression model, whereas Z,, denotes an n-class classification.

Model Type Pred. Type Seq. Chunked RE
g BERT-QPP Baseline [0,1] X X X
h + Seq. Ablation [0,1] v X X
i + Seq. + RankEmb Ablation [0,1] v X v
Jj qppBERT-PL Proposed ZLipia v v v
k - Seq. Ablation Ljta X X v
[ — Chunked Ablation Y/ v X v
m  —RankEmb Ablation Zip11 v v X
n — Chunked — RankEmb Ablation /e v X X

IR evaluation metric value. Since our model makes use of more than one doc-
ument, we extend the original BERT-QPP method by additionally encoding
the information from top-£ retrieved as a sequence (similar to our proposed
approach). This is performed so as to ensure a fair comparison between the
methods.

We consider two extended versions of this approach. In the first version (see
row h of Table 6.5), we only include the information from the top-k as a flat
sequence with no chunking. In the second version, we include the rank em-
bedding information similar to our model (see row i of Table 6.5). One of the
main differences of our proposed model qppBERT-PL with the ones shown in
the extensions to BERT-QPP (rows & and ¢ of Table 6.5) is that the latter ones
are regression models (see the ‘Pred.” column of the table). These extensions to
the BERT-QPP approach act as ablations with respect to our complete model

setup, thus allowing us to conduct more fair, comprehensive comparisons.

Ablations of our proposed model. In relation to our proposed model
qppBERT-PL, we study several ablations by selectively removing one or more
sources of information. First, instead of encoding the information from top-k
as a sequence, we simply use the top-retrieved documents, the only difference
with BERT-QPP now being we include the rank embedding (see row £ of Ta-
ble 6.5). As our second ablation, instead of presenting a partitioned input of
the top-k£ documents to the qppBERT-PL, we learn to predict the number of
relevant documents on the entire top-k set by applying a (k + 1) dimensional
Softmax (see row [ of Table 6.5). Similarly, we derive our third ablation by
removing the rank embedding information from qppBERT-PL (see row m). Fi-
nally, we remove both the chunk-based workflow and the rank embedding

information to derive another ablation (row n of Table 6.5).
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Table 6.6: Comparison between the QPP effectiveness achieved by the proposed
qppBERT-PL method and other baseline methods. The differences between the best
results, obtained by qppBERT-PL (bold-faced), and the next best performing method,
BERT-QPP, are significant (t-test with 95% confidence).

MS MARCO Dev TREC-DL'19 TREC-DL"20
MRR@10 AP@100 MRR@10 AP@100 MRR@10 AP@100
P-r K- P-r K- ‘ P-r K- P-r K- ‘ P-r K- P-r K-7

Type Models

a NQC 0.331 0.298 0.285 0.227 | 0.239 0.185 0.183 0.107 | 0.259 0.243 0.179 0.124
b Clarity 0.173 0.248 0.172 0.207 | 0.156 0.147 0.096 0.113 | 0.239 0.215 0.107 0.129
b ¢ WIG 0.193 0.215 0215 0.203 | 0.192 0.133 0.133 0.089 | 0.260 0.241 0.143 0.096
£ d UEF(NQC) 0.347 0.313 0294 0.227 | 0254 0.235 0.189 0.112 | 0.275 0291 0.200 0.126
§ e SCNQC 0.334 0.310 0.304 0.228 | 0261 0.251 0.204 0.123 | 0.284 0.298 0.215 0.141
| f  WS-NeurQPP 0.215 0.197 0.173 0.193 | 0.156 0.126 0.129 0.133 | 0.271 0.253 0.133 0.112
g BERT-QPP 0.520 0411 0326 0301|0350 0.363 0.268 0.202 | 0.343 0.341 0.233 0.195
h + Seq. 0.463 0.360 0.301 0.312 | 0.345 0.333 0.265 0.193 | 0.277 0.218 0.258 0.190
i + Seq. + RankEmb 0.473 0370 0.328 0.285|0.323 0.332 0.253 0.167 | 0.303 0.236 0.252 0.172
- j  qppBERT-PL 0.562 0.448 0.354 0.327 | 0.413 0.403 0.301 0.247 | 0.422 0.392 0.303 0.251
2 k —Seq. 0.512 0.386 0.303 0.283 | 0.357 0.349 0.274 0.193 | 0.345 0.320 0.271 0.200
§_ l — Chunked 0.520 0413 0331 0274|0373 0.326 0.290 0.225 | 0.370 0.333 0.297 0.231
& m —RankEmb 0.519 0.392 0.320 0.267 | 0.361 0.328 0.285 0.232 | 0.352 0.331 0.293 0.215
n — Chunked - RankEmb  0.405 0.329 0.293 0.285| 0.309 0.299 0.260 0.159 | 0.217 0.198 0.199 0.184

Implementation-specific details. All supervised methods were trained on the
MS MARCO training split of the data. The dimension of the hidden layer for
the LSTM cells was set to 768 and that of the dense layer was set to 100, i.e.,
Orsti € R™® and ¢ € R (see Equation 6.16). For the supervised models,
we executed one epoch through the training set with a batch size of 16 as pre-
scribed by the BERT-QPP paper (Arabzadeh et al., 2021). For the classification
methods, we used a cross-entropy loss. Parameter updates were performed

using the Adam optimizer with a learning rate of 0.012.

For the regression-based methods (rows ¢ to i of Table 6.5), we used the
AP@100 values as the ground-truth for regression. In contrast, the ground-
truth for our proposed model and its ablation variants (methods in the bottom
group of Table 6.5) is the number of relevant documents of each chunk, or the

total number of relevant documents in top-£, if chunking is not applied.

6.5.3 Results and Analysis

Table 6.6 presents a summary of the results of our experiments. We first ob-
serve that our proposed approach, qppBERT-PL (row j), outperforms all base-
line approaches for all three datasets and across all measures. This includes
BERT-QPP (g), the prior state-of-the-art approach for this task. The relative
improvement ranges from 8.1% (MRR@10 P-r on MS MARCO Dev) to 30.0%

2Source code available at https://github.com/suchanadatta/gppBERT-PL.git
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Figure 6.8: Per-query comparisons of QPP effectiveness between qppBERT-PL and
BERT-QPP in terms of scaled Absolute Rank Error (sSARE) (Faggioli et al., 2021) com-
puted with MRR (left) and AP (right). Comparisons are made on the TREC-DL
dataset, comprising 97 queries. It can be seen that our method (qppBERT-PL) exhibits
lower (hence more effective) SARE values on an average (bars with smaller heights).
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(AP@100 P-r on TREC-DL'20), clearly showing a marked increase in the abil-
ity to predict query performance. The relative improvement on datasets with
deeply-annotated labels (TREC-DL'19 and 20) were consistently higher than
on the sparsely-annotated MS MARCO Dev set (+11.0-30.0% compared to
+8.1-9.0%). All other baselines we explored (rows a—f) yielded even poorer
results. This clearly shows that our proposed qppBERT-PL is more effective at
predicting query performance than existing methods.

To test whether our proposed sequential modeling approaches can also im-
prove the previous state-of-the-art model, we conduct ablations on BERT-QPP.
In the results, rows h and ¢ correspond to two versions of BERT-QPP that are
generalised to closer match qppBERT-PL by, rather than consuming only the
top retrieved item, taking the top-%£ (and optionally including rank embed-
dings). We find that this approach tends to lead to a decrease in QPP perfor-
mance. In two cases, the approaches can lead to a slight increase in perfor-
mance (AP@100 K-7 on MS MARCO Dev and AP@100 P-r on TREC-DL'19).
Meanwhile, note that the sequence modeling appears to be critical for the suc-
cess of qppBERT-PL; when sequence modeling is removed from the model
(row k), QPP performance drops considerably. These results suggest that at-
tempting to predict ranking effectiveness scores directly from sequences is
challenging for models to learn using existing techniques.
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We now explore the effect of the proposed rank embedding and chunking
components of qppBERT-PL. We observe that when we remove chunking (i.e.,
make a binary decision about each individual document, row ) or the rank em-
bedding (i.e., do not provide the model with information about the absolute
rank of the documents, row m), QPP performance drops to the level of around
or below BERT-QPP. When both of these components are removed (row n), the
performance drops even further. These results suggest that not only informa-
tion about surrounding documents is necessary to estimate QPP well, but also
the absolute rank of the documents within the ranked list.®> The former ob-
servation is aligned with findings in neural ranking (Nogueira et al., 2019a).
However, to the best of our knowledge, the latter has not been observed in
other contexts. Hence, we find that both chunking and Rank Embeddings are

critical components in our proposed method.

Analysis. We now focus on the per-query QPP effectiveness of the TREC-DL
topic set. To do this, we employ the metric scaled Absolute Rank Error (SARE)
proposed in Faggioli et al. (2021). More concretely, the sSARE metric computes
the absolute difference between the position (rank) of a query when ordered
by a ground-truth retrieval effectiveness metric (e.g. AP) and when ordered
by the estimated QPP scores.

Figure 6.5.3 plots the SARE metric values for each query for our method and
the best performing baseline, namely BERT-QPP (as observed from Table 6.6).
By comparing the plots in Figure 6.5.3, both with MRR (sARE(MRR)) and
AP (sARE(AP)), we observe that qppBERT-PL leads to lower rank errors than
BERT-QPP on the TREC-DL dataset (on an average the dark-shaded bars are
shorter than the lightly shaded ones).

Furthermore, we investigate the sensitivity of our proposed model, qppBERT-
PL, to the chunk size p. We conduct a grid search for the optimal chunk size
over the set {1, 2,4, 8, 16, 20}. Figure 6.9 shows that the best results are obtained
on both MS MARCO Dev and TREC-DL with a chunk size of 4. We observe
that our method is somewhat insensitive to the chunk size parameter for p
2, 8]. For values of p lying outside of this range, the effectiveness of qppBERT-

PL can decrease considerably.

The sensitivity plot of Figure 6.9 thus illustrates that prediction usually per-
forms well when the model is able to leverage information from a set of doc-

uments, rather than a single one. This is reflected by the relatively low value

31t is important to remember that the query performance itself is induced from individual
chunk estimations in a final step, where rank information is provided.
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Figure 6.9: Sensitivity of qppBERT-PL on the MS MARCO Dev set (left) and the
TREC-DL query set (right) with respect to the chunk size parameter (p).
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of QPP effectiveness obtained with p = 1. However, using information from
too many documents is likely to confuse the model, as can be seen from the
decrease in QPP effectiveness for p > 8.

6.6 Conclusions

Our experiments in Chapter 5 demonstrated that augmenting queries blindly
via relevance feedback may lead to poor retrieval effectiveness, because it of-
ten deviates some queries from their original information need. Therefore,
we hypothesized that augmenting queries selectively is likely to reduce query
drifts, improving overall retrieval effectiveness. With this idea in mind, in this
chapter, we revisited the QPP task with the aim of estimating the difficulty of
queries, which could potentially lead to improved retrievability.

We have proposed two new entirely data-driven supervised query perfor-
mance predictors — one based on 2D convolutional networks, the other using
a transformer-based estimator. Both are effective in estimating the specificity
of an input query with respect to a given collection. In other words, the ex-
tent to which a retrieval model can distinguish the relevant documents from
the rest of the collection for the input query. This allows us to automatically
estimate the retrieval quality of a search system for a query without the pres-
ence of relevance assessments. The success of both of our proposed models
in comprehensive experimental evaluations motivates us to develop a selec-
tive feedback model as a downstream task of our QPP approaches. In the next
chapter, we will explain the end-to-end architecture of this selective feedback

model and how it improves causal retrieval effectiveness.
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CHAPTER

SEVEN

SELECTIVE RELEVANCE
FEEDBACK FOR CAUSAL IR

7.1 Introduction

The keywords entered by a user as a query to a search engine are often in-
adequate for expressing the user’s information need, creating a lexical gap be-
tween the query text and the relevant documents (Belkin et al., 1982). Stan-
dard pseudo relevance feedback (PRF) methods, such as the relevance model
(Lavrenko & Croft, 2001) and its variants (Ganguly et al., 2012; Salakhutdinov
& Mnih, 2008; Roy et al., 2016; Mackie et al., 2023), can overcome this problem
and ultimately yield improvements in retrieval effectiveness. Generally speak-
ing, PRF methods are designed to enrich a user’s initial query with distinctive
terms from the top-ranked documents (Rocchio, 1971; Mitra et al., 1998; Xu &
Croft, 2000).

Despite the demonstrated success of PRF in improving retrieval effectiveness,
a number of studies have identified certain limitations of this strategy (Biller-
beck & Zobel, 2004; Lv & Zhai, 2009a; Cronen-Townsend et al., 2004; Deveaud
et al., 2018). For the most part, these limitations share a common theme: there
is no consistent PRF setting that works well across a wide range of queries.
In simpler terms, one size does not fit all. To illustrate this idea, Figure 7.1 de-
picts a scenario where nearly 38.9% of the queries from TREC DL'20 topic set
are penalized as a result of PRF. Not only do standard datasets confirm this,
but our experimental findings with a causal dataset in Chapter 5 also support
this observation (see Figure 5.4.6). Keeping this in mind, this chapter proposes
an adaptive relevance feedback framework that includes a data-driven super-
vised neural approach to optimize retrieval effectiveness by applying feedback
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Relative changes in AP

Figure 7.1: Relative changes in AP, i.e., (AP(post-fdbk) - AP(pre-fdbk))/AP(pre-
fdbk), for TREC DL20 queries. We observe that many queries are negatively impacted
by PRF (bars below the x-axis).

on queries in a selective fashion Our experiments on both standard ad-hoc IR
dataset, e.g. MS MARCO (Nguyen et al., 2016) and newly created causality-
driven dataset, CARD in Chapter 4 confirms the effectiveness of selective feed-

back for better retrieval.

Previous work has shown that not all documents contribute equally well to
PREF, as certain documents may impair retrieval effectiveness when used to ex-
pand a query (Lee et al., 2008; Bashir & Rauber, 2009). This can even be true
when relevant documents are used to enrich a query’s representation (Terra
& Warren, 2005). It has also been observed that some queries are amenable to
more aggressive query expansion, while others work better with more conser-
vative settings (Ogilvie et al., 2009). Moreover, not all terms might contribute
equally well in terms of enriching the representation of a query (Cao et al.,
2008; He & Ounis, 2009), which suggests that a selective approach to PRF can
potentially improve the overall system effectiveness.

Rather than following the previous approaches on adapting the number of
feedback terms (Ogilvie et al., 2009) or attempting to choose a robust subset
of documents for PRF (Lee et al., 2008; Bashir & Rauber, 2009), we rather fo-
cus on solving the more fundamental decision question of “whether or not to
apply PRF for a given query” (Cronen-Townsend et al., 2004; Lv & Zhai, 2009a)
through the use of a supervised data-driven approach. We hypothesize that
selectively applying feedback to queries well-suited for PRF can improve the
overall success of information retrieval. This approach aims to prevent query

drift in situations where feedback might otherwise be counterproductive.

The main novelty of our proposed selective pseudo relevance feedback (SRF)
approach is that, in contrast to existing work on selective PRF, we propose
a data-driven supervised neural model for predicting which queries are con-
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Figure 7.2: A schematic diagram of selective feedback. The main contribution of this
model is a supervised data-driven approach towards realizing the decision function.

ducive to PRFE. Specifically, during the training phase we make use of the rel-
evance assessments to learn a decision function that can predict whether it is
useful to apply PRE. The process considers both the initial query and the top-
ranked documents with and without feedback. During the inference phase,
we make use of only a part of the shared parameter network which predicts
whether PRF is to be applied. This strategy reduces computational costs for
queries where PRF should eventually be ignored. The overall process is de-
picted in Figure 7.1.

A key advantage of our SRF approach is that it can be applied to the out-
put ranked list obtained by any retrieval model, ranging from sparse models
(e.g., BM25, LM-Dir) to dense ones such as MonoBERT (Nogueira et al., 2019b).
Moreover, in the SRF workflow it also is possible to use any PRF model to en-
rich a query’s representation, ranging from sparse models (e.g., RLM) to dense
ones (e.g., ColBERT-PRF from Wang et al. (2023)); from generative ones (e.g.,
GRF from Mackie et al. (2023)) to the new FCRLM approach that we proposed
in Chapter 5.

7.2 Related Research

The evolution of relevance feedback in IR spans from traditional query ex-
pansion models (Ogilvie et al., 2009; Cao et al., 2008) to cluster-based feedback
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document selection (Lee et al., 2008; He & Ounis, 2009). Prior research has con-
sidered both unsupervised selective feedback (Cronen-Townsend et al., 2004)
and feature-driven methods (Lv & Zhai, 2009a). Several existing methods,
both supervised and unsupervised, hinge on decision-based relevance feedback.
A common unsupervised approach involves using Query Performance Pre-
diction (QPP) scores (Shtok et al., 2012; Zhou & Croft, 2007; Shtok et al., 2010;
He & Ounis, 2007), which we include as a baseline. The higher the QPP score,
the greater the chance of identifying relevant documents at the top rank posi-
tions with the initial query. However, high variances in retrieval status values,
as seen in neural re-rankers like MonoBERT, can make QPP scores deceptive.
To avoid such heuristics, our method focuses solely on query terms and the
documents retrieved by that query in order to learn the selection function.

PRF on and for dense retrieval. Recently, the community has seen a signif-
icant interest in feedback for dense retrieval to boost performance. Precur-
sors to dense feedback models made use of word embeddings for PRF. For in-
stance, Roy et al. (2016) proposed a generalized RLM built upon word embed-
dings, while Zamani et al. (2016) leveraged non-negative matrix factorization
to bridge the semantic gap between the terms in a query and the correspond-

ing top-retrieved documents.

Work by Yu et al. (2021) explored relevance feedback principles within dense
retrieval models. In a separate study, Li ef al. (2022a) examined the quality of
feedback signals, contrasting conventional models such as those developed by
Rocchio (1971) with dense retrieval models like those based on ANCE (Xiong
et al., 2020), concluding that the dense retrievers demonstrated greater robust-
ness. Representation models, such as ColBERT (Khattab & Zaharia, 2020), can
allow us to append additional embedding layers to the query representation,
as demonstrated by Wang et al. (2021). This method employed contextual-
ized PRF to cluster and rank feedback document embeddings in order to select
suitable expansion embeddings, thus improving document ranking. In other
work, Zhuang et al. (2022) leveraged implicit feedback from historical clicks for
relevance feedback in dense retrieval. The authors introduced counterfactual-
based learning-to-rank, showing that historic clicks can be highly informative
in terms of relevance feedback. Finally, Li et al. (2022b) proposed the idea of
combining feedback signals from both sparse and dense retrievers in the con-
text of PRF.

More recently, PRF on dense IR models has garnered significant interest (Li
et al., 2018; Naseri et al., 2021; Zheng et al., 2020; Wang et al., 2023). The concept
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of ‘dense for PRF” was first motivated by Montazeralghaem et al. (2020), who
proposed a reinforcement-based learning algorithm designed to explore and
exploit various retrieval metrics, aiming to learn an optimized PRF function.
Following the recent success of LLMs, Mackie et al. (2023) proposed a genera-
tive feedback method (GRF) that makes use of LLM generated long-form texts
to build a probabilistic feedback model. In contrast, our work aims to develop
a generic PRF strategy that does not apply feedback blindly, but rather learns
a selection function in a supervised manner to analyze the suitability of rele-
vance feedback for each query irrespective of sparse or generative PRE.

Selective PRF. Prior work in this area has considered either fully unsuper-
vised strategies (Cronen-Townsend et al., 2004) or feature-based supervised ap-
proaches (Lv & Zhai, 2009a) for selective relevance feedback (SRF). The former
makes use of QPP-based measures to predict if a query should be expanded,
where the decision depends on whether the QPP score exceeds a given thresh-
old. On the other hand, existing supervised approaches first represent each
query as a bag of characteristic features derived from its top-retrieved set of
documents. A classifier is subsequently trained on these features to predict
whether or not a query should be expanded (Lv & Zhai, 2009a).

7.3 Selective Feedback Model Description

7.3.1 A Generic Decision Framework for PRF

In this section, we formally describe the generic framework for selective PRF.
Given a set of queries Q = {Q, ..., Q,}, a standard relevance feedback model
M uses the information from the top-retrieved documents of each query to
enrich its representation, ie., M : @ — ¢n(Q). Consequently, each query
() € Qs transformed to an enriched representation ¢,,(Q), which is then used

either for re-ranking the initial list, or to execute a second-step retrieval.

Unlike the standard PRF setting, a decision-based selective PRF framework
first applies a decision function, 0 : () — {0, 1}, which outputs a Boolean to indi-
cate whether the retrieval results for () are likely to be improved by applying
PRF. As per our proposal, the overall PRF process on the set of queries Q does
not blindly use the expanded query ¢,(Q) for each Q € Q. Rather, it makes
use of the function §(Q) for each query @ to decide independently whether to
output the initial ranked list or to use an enriched query representation ¢, (@),
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as obtained by a PRF model M. This leads to either re-ranking the initial list or
re-retrieving a new list via a second stage retrieval. Thus, the top-k ranked list
of documents, L(Q) = {D¥, ..., D%}, retrieved for a query @, in addition to
being a function of the query @ itself, is thus also a function of i) the feedback
model M, ii) the enriched query representation ¢,,(Q), and iii) the decision

function 0. Formally,

Li(Q) = 7(@), %fe(@ ’ (7.1)
o(om(Q)), if0(Q) =1,

where 0(()) denotes a retrieval model (e.g., BM25) that outputs an ordered set
of £ documents sorted by the similarity scores. Previous approaches have ex-
plored the use of both unsupervised and supervised approaches for address-
ing this decision problem. We now briefly explain both strategies in our own

context.

Unsupervised decision function. An unsupervised approach, such as that
proposed by Cronen-Townsend et al. (2004), applies a threshold parameter on
a QPP estimator function fqpp : Q — [0, 1]'. More concretely, if the predicted
QPP score is lower than the threshold parameter, it is likely to indicate that the
retrieval performance for the query has scopes for further improvement and
subsequently PRF is applied for this query. Formally speaking, the decision

function of an unsupervised approach takes the form

def

0(Q) == I(Ogpp < 7), (7.2)

where 7 € [0, 1] is the threshold parameter.

Supervised decision function. An unsupervised function 6(Q)) as per Equa-
tion 7.2 depends only on the information of a query and its top-retrieved docu-
ments. In a supervised approach, this decision additionally depends on the en-
riched query representation and its top-retrieved documents. More precisely, a
supervised PRF decision is a parameterized function of features of: i) the query
(), ii) its top-retrieved documents L (@), iii) the enriched query ¢,/(Q), and iv)
its top-retrieved set Ly (¢ (Q)) (Lv & Zhai, 2009a). The corresponding training
process makes use of a set of queries, denoted Qy.in, for which ground-truth
indicator labels are available. These labels are calculated by comparing the re-

trieval performance of the original query against that of the enhanced query,

!While a QPP estimate is not generally required to lie within [0, 1], in practice the estimated
value can be normalized within the unit interval.
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Figure 7.3: A schematic overview of the data-driven modeling of the decision func-
tion for selective relevance feedback.

using the available relevance assessments to measure effectiveness. Formally,

y(Q) =I(AP(¢n(Q)) > AP(Q)), (7.3)

where AP(Q) denotes the average precision of a query Q € Qyain.”

The ground-truth indicator values of Equation 7.3 are used to learn the pa-
rameters of a classifier function to yield a supervised version of the decision
function 6, given by:

def
Q(Q) — (- 2Q,00(Q)s where

0(Q) ~ argmin > W@ = ¢ 2 smian)™

Q/ S Q,train

(7.4)

In the above, ( represents a set of learnable parameters, with zy 4,, (o) denot-
ing a set of features extracted from both the original query @)’ and the enriched
query ¢, (Q)') along with the features from their top-retrieved set of documents
Li(Q") and Ly (¢ (Q')). The variable y(Q)’) (as defined in Equation 7.3) denotes
the ground-truth indicating whether PRF should be applied for @'.

The optimal parameter vector ¢, as learned from a training set of queries Qyain,
is then used to predict the decision for any new query Q). The exact features we
use are described later in Section 7.4. In the next section we describe a data-
driven approach that makes use of the terms in a query and those in the top-
retrieved documents towards a data-driven learning of the decision function
with deep neural networks.

?Here, we explore only average precision. We note that other measures of query effective-
ness could be used as well, depending on the needs of the application.
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7.3.2 Deep Learning of PRF Decision

Motivated by the merits of the QPP methods we proposed previously in Chap-
ter 6, we first provide a generic description of our proposed neural model for
selective feedback, and then describe two concrete architectural realisations of
the generic neural framework — one with convolutional operations, and the
other with transformers. We will see that the latter yields higher effectiveness

at the cost of increased run-times for training and inference.

We adopt an approach similar to that summarized in Equation 7.4, which in-
volves training a supervised approach to learn if PRF should be applied for a
query. However, unlike Equation 7.4, instead of making use of a specific set
of extracted features, the learning objective makes use of the terms present in
the documents and the queries. As with Equation 7.4, we make use of both the
content of the original query ) and its enriched form ¢,;(Q), along with their

top-retrieved sets. Formally,

def

6(Q) == (- (E@Q.DY..... DY) & E(om(Q), DMV, DY), (7.5)
where 0(Q) is learned by computing:

arggnin D W(@) = ¢ (EQ Li(Q) @ EDm(Q), Li(om (@) (7.6)

Q’e Q' train

In Equation 7.6, £ is a parameterized function for encoding the interaction
between a query () and its top-retrieved documents, L;(Q). This encoding
function maps a query (a sequence of query terms) and a sequence of docu-
ments (which are themselves sequences of their constituent terms) to a fixed
length vector, ie, £ : Q, Ly — RP (p an integer, e.g., for BERT embeddings
p = 768). Here © indicates an interaction operation (e.g., a merge layer in a
neural network) between the query-document encodings corresponding to the
original query and the enriched one. A schematic overview of the proposed

data-driven neural model is shown in Figure 7.3.1.

We will now detail two specific realizations of the encoding function £. One
version represents documents and queries as collections of terms, ignoring

their order, while the other considers them as ordered sequences.
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Figure 7.4: A concrete realization of the encoding of the query-document pairs via
the use of DRMM-based early interaction. Interaction vectors between each query
term and a top-retrieved document are stacked to form a matrix. The corresponding
matrices for each top-retrieved document are considered as separate channels of input
data, which are passed through 2D convolutional filters.

7.3.3 Term Overlap-based Encoding

Our first implementation follows from the word embedding-based interac-
tions in the deep relevance matching model (Guo et al., 2016). Rather than
applying separate encoders for documents and queries, this method first
computes the interaction between a query () and a top-retrieved document
D® € L;(Q) as a fixed length vector by quantizing the cosine similarity val-
ues between every term pair — one from the query ) and the other from the
document D?. The quantization step involves the use of a hyper-parameter
p, which is the number of intervals in which the range of the cosine similarity

values ([—1, 1]) is partitioned.

Specifically, the value of the 3™ component (3 = 1,...,p) of the interaction
vector between a query and a top-retrieved document is obtained by counting
the number of terms that yield similarities which lie within the 5™ partition,
i.e.,

A=) wew 28

< < — -1
p laillwl — p

(D)= > 1 7.7)

weD?
where both q; € R? and w € R? denote the embedded vectors corresponding
to the j™ query term ¢; € Q and a term w of the i document D¥. Here
I[X] € {0,1} is an indicator variable which takes the value of 1, if a property
X is true and 0 otherwise. Following the findings of Guo et al. (2016), we use
the inverse document frequencies (IDFs) of query terms to weigh (via scalar
multiplication) the interaction tensors. Note that the IDF factors are not shown
in Equation 7.7 for the sake of brevity.
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By construction, the interaction vector itself between a query term and a top-
retrieved document is a p-dimensional vector, i.e., ¢; DZQ € RP. We then
construct a matrix for the overall interaction between the query () with a top-
retrieved document D by stacking the interaction vectors for each query term.
Finally, we stack together the matrices for each of the & documents in D? ¢
Li(Q) to yield a tensor of order 3.

In a similar manner, we also obtain the interaction tensor with the enriched
query ¢ (Q). Note that, to ensure that the interaction tensors for the original
and the expanded queries are of the same dimensions, the length of a query
needs to be set to a maximum value, say N. As a result, the dimensions of the

interaction tensors become k x N X p.

Ideally, the hyper-parameter N is the sum of maximum query length (n) in
the dataset and the number of feedback terms (t) selected to construct the ex-
panded query, ¢,/(Q). Therefore, the parameter n is simply computed from
the dataset, whereas t is treated as a hyper-parameter and its optimal value is
obtained from the set {5, 10, 15, 20, 25, 30, 35,40}. In fact, our reported results
in Table 7.2 and 7.3 uses the optimal values of ¢ found via grid search.

In the next step, following the idea of our proposed QPP model in Chapter 6
(refer to Section 6.4), we then employ a 2D convolutional neural network that
takes as input a k£ x N x p dimensional interaction tensor — one for the origi-
nal query and the other for the expanded one (see Figure 7.4). This slices the
tensor into IV channels and transforms each to yield a fixed-length vector after
the standard flattening step, following the application of the convolutional fil-
ters. Formally, the query-document encoding function, as per the notation in

Equation 7.6, is thus defined as

[p®DP] ... [q @Dy
E(Q, Ly(Q)) = Conv2D . . . ) (7.8)

lav & D] ... [an @ Dy]

where Q refers to either an original query @ or its expanded form ¢,/(Q).

The @ interaction in Equation 7.6 between the 2D-CNN encoded vectors is
then given by a merge operation, followed by a dense layer of parameters,
finally leading to a sigmoid for the binary prediction of the PRF decision func-
tion. The 2D-CNN coupled with the merge and the dense layers thus define
the full set of parameters (.

For our experiments, we use skip-gram word vectors of dimension 300 trained
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Figure 7.5: A concrete realization of the query-document encoding function via the
use of transformers. This model, unlike the one shown in Figure 7.4, involves late
interactions and is able to model the sequence of terms within a document and also
the order of the documents within the top-% set.

on the respective document collections, with a window size of 10 and 25 nega-
tive samples. We use two layers of stacked 2D convolution with kernel k; = 5
and k, = 3 (i.e. a 5x5 filter for the first layer and a 3x3 for the second one).
We refer to this particular realization of the generic data-driven approach as
Deep-SRE-CNN (Deep Selective Relevance Feedback with the use of 2D con-

volutions).

7.3.4 Transformer-based Encoding

The 2D-CNN-based encoding makes use of individual word vectors to ob-
tain interaction tensors, which are then supplied as inputs to a neural net-
work. Unlike the idea of early interactions, the transformer-based encoding
uses the BERT architecture which takes as input the contextual embeddings
of the terms for each pair comprising a query () and its top-retrieved docu-
ment D? € L;(Q). The 768 dimensional ‘[CLS]’ representations of each query-
document pair is then encoded with LSTMs as a realisation of the encoded rep-
resentation of a query and its top-retrieved set, i.e., to define £(Q), L(Q)) as

per the notation of Equation 7.6.

Similar to the architecture described in Section 7.3.3, we also obtain a BERT-

based encoding of the expanded query ¢, (Q)) and its top-retrieved set and
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then merge the two representations before passing them through a feed-
forward network. More formally,

£(Q, Lk(Q)) = LSTM(BERT(Q, D?)[CLS}a ..., BERT(Q, D}?)[CLS])- (7.9)

As in Equation 7.7, the variable Q € {Q, ¢,/(Q)}, i.e., in one branch of the net-
work it corresponds to the original query, whereas in the other it corresponds
to the expanded one. Figure 7.3.4 shows the transformer-specific implemen-
tation of the encoding function. In this case, the set of learnable parameters ¢
comprises of the LSTM and the fully connected (dense) layer parameters, as
shown in Figure 7.3.4. We name this particular model Deep-SREF-BERT (Deep

Selective Relevance Feedback with the use of BERT transformers).

During the inference stage of the model, only the component that relates to
the original query and its top-ranked documents is employed to predict the
output variable (a sigmoid). If this output exceeds 0.5, it indicates that PRF
should be applied.

7.3.5 Model Confidence-based PRF Calibration

Prior work has applied confidences of prediction models to improve retrieval
effectiveness (Cohen et al., 2021). In our work, we use the uncertainties in the
prediction of the decision function to further improve search results. Rather
than only reporting either results with or without relevance feedback, we make
use of the confidence of the decision function (@) to combine the results from
the two lists — one without feedback and the other with feedback. Specifi-
cally, if the supervised model outlined in Section 7.3.1 is decisive in its choice
between L;(()) (the list retrieved for the original query) and L (¢ (Q)) (the
list retrieved for the expanded query), then one of the rankings is expected
to dominate over the other. However, when the model 0(Q) itself is not confi-
dent about the prediction, we can potentially achieve better results if we “meet

somewhere in the middle”.

Formally, we propose a rank-fusion based method, where the fusion weights
are obtained from the predictions of the PRF decision model (). The pre-
dicted value 0(Q) (a sigmoid) represents the probability of classifying the de-
cision into one of the two outcomes — the closer 6((Q)) is to 0, the higher is the
model’s confidence in not applying feedback, and similarly the closer 6(Q) is
to 1, the higher is the model’s confidence in applying PRF. The predicted val-
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ues of 4(R)) € [0, 1] can thus be used as weights to fuse the two different ranked
lists, i.e., the fusion score o (Q), D) of a document D for a query () is given by
1-0(Q) 0(Q)

7@ D) = kD, Lo(Q)) T Rank(D. Lnion @)’ 0

where the notation Rank(D, L) denotes the rank of a document D in a list L.
If D ¢ L, then the rank is set to a large value X(> k). For our evaluations,
we use the value 1000, which was higher than all values of k£ considered in the

experiments.

For values of 6(Q)) close to 0.5 (i.e., the highest uncertainty in prediction), the
fusion-based approach leads to a more uniform contribution from both the
lists. In contrast, a value of §(Q) close to 0 ensures that the majority of the
score contribution comes from the original query (since 1 -6(Q) >> 6(()), and
a similar argument applies for #(Q)) — 1, in which case the major contribution
comes from the second term on the right-hand side of Equation 7.10.

7.4 Evaluation

7.4.1 Methods Investigated

We now evaluate the methods proposed earlier in this chapter. In addition
to conducting experiments with our proposed model Deep-SRF-BERT (Figure
7.3.4), we also incorporate the confidence-based calibration with rank fusion
(Equation 7.10 and 7.11), which we denote by adding the suffix R2F2 3. For
comparison purposes, we consider a range of unsupervised and supervised
methods. Some baselines correspond to existing methods, while others rep-
resent extensions of alternative approaches. The latter allow us to provide a
fair comparison, such as by using a more recent QPP method instead of the

originally-proposed clarity score (Cronen-Townsend et al., 2004).

PRF is a standard non-selective relevance feedback model, namely RLM
(Lavrenko & Croft, 2001). We use the RM3 version of the model as reported
by Jaleel et al. (2004), which is a linear combination of the weights of the orig-
inal query model and new expansion terms. In fact, we use RLM as one of
the base PRF model M which means that the standard RLM degenerates to
a specific case of the generic selective PRF framework of Equation 7.1 with

3Source code : https://github.com/suchanadatta/AdaptiveRLM.git
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6(Q) = 1VQ € 9, i.e., when for each query we use its enriched form ¢,;(Q).
R2F2 refers to an adaptation of the Reciprocal Rank-based Fusion (RRF) Cor-

mack et al. (2009), a simple yet effective approach for combining the document
rankings from multiple IR systems. For our task, instead of combining ranked
lists from two different retrieval models, we merge the ranked lists of the orig-
inal and the expanded queries, i.e., Ly (@) and Ly (¢ (Q))) as per our notations.
We name the adapted method Reciprocal Rank Fusion-based Feedback (R2F2).

Formally, the score for document D after fusion is given by

or(Q, D) = 11—« «

= Rank(D, Ix(Q)) | Rank(D, Lr(6m(Q)))’ (7.11)

where, similar to Equation 7.10 Rank(D, L) denotes the rank of a document
in a list L (this being a large number X if D ¢ L), and a € [0,1] is a linear
combination hyper-parameter that we adjust with grid search on each train-
ing fold. A lower value of a puts more emphasis on the initial retrieval list,
whereas a higher value ensures that the feedback rank of a document con-
tributes more. Equation 7.11 is a special case of Equation 7.10 with a constant

value of §(Q)) = « for each query Q).

QPP-SRF is an adaptation of the method proposed by Cronen-Townsend et al.
(2004), where the QPP score of a query is used as estimate to decide if PRF
should be applied for that query (see #(Q) in Section 7.3.1). The idea here
is that a high QPP score is already indicative of an effective retrieval perfor-
mance, in which case, the method avoids any further risk of potentially de-
grading the retrieval quality with query expansion. We refer to this method
as QPP-based selective relevance feedback (QPP-SRF). The method requires a
base QPP estimator for obtaining the fqpp scores.

To choose the QPP estimator, we conducted a set of initial experiments using
several standard unsupervised QPP approaches. Our proposed supervised
QPP method qppBERT-PL in Chapter 6 demonstrated the best downstream
retrieval effectiveness. Therefore, we report results of QPP-SRF combined with
qppBERT-PL, where training is conducted using the settings as mentioned in
Section 6.5.2. A key parameter for QPP-SRF is the threshold value 7 (7 € [0, 1])
which controls the decision around whether PRF is applied or not. In our
experiments we tune 7 on the train folds. To ensure that the threshold can be
applied for any QPP estimate, we normalize the QPP estimates in the range
[0, 1].
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TD2F is an unsupervised selective feedback approach that is conceptually sim-
ilar to QPP-SRF (Cronen-Townsend et al., 2004). Rather than using a QPP
method, it computes the difference of the term weight distributions across the
sets of documents retrieved with the original and the expanded queries, i.e.,
the sets L;(Q)) and L (¢ (Q)) as per our notations introduced in Section 7.3.1.

Formally,
1
Q) =7 > log P(t|Lx(Q)) — log P(t| Li(a(Q))), (7.12)
tev
where the set V' denotes the vocabulary of the two lists, ie, V = Vi, U

V(o (0))- As per Cronen-Townsend et al. (2004), we set the feedback decision
threshold 7 to a value such that over 95% of the queries satisfy the criterion
that #(Q)) < 7. We name this method as Term Distribution Divergence based
Feedback, or TD2F for short.

LR-SREF is the only existing supervised method that uses the query features,
along with their top-retrieved documents, to predict the PRF decision (Lv &
Zhai, 2009a). The ground-truth labels for learning the decision function is ob-
tained for a training set of queries with existing relevance assessments (i.e.
y(Q) = [(AP(¢pn(Q)) > AP(Q))). The method then uses Equation 7.4 to train
a feature-based logistic regression classifier. In particular, the experiments
reported by Lv & Zhai (2009a) used the following features for training the
logistic regression model: i) the clarity of top-retrieved documents (Cronen-
Townsend et al., 2002), ii) the absolute divergence between the query model )
and the relevance model (Lavrenko & Croft, 2001), iii) the Jensen-Shannon di-
vergence between the language model of the feedback documents (Lin, 2006),
and iv) the clarity of the query language model. We refer to this method as
Regression-based Selective Relevance Feedback (LR-SRF).

7.5 Experimental Setup

7.5.1 Dataset and Train-Test Splits

Our retrieval experiments are conducted both with a standard ad-hoc IR
dataset, the MS MARCO passage collection (Nguyen et al., 2016) and our
newly proposed causal ad-hoc dataset, CARD, introduced in Chapter 4. The
relevance of the passages in the MS MARCO collection are more of personal-
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Table 7.1: Summary of the data used in our SRF-based experiments. The columns
‘1Q|" and ‘# Rel’ denote average number of query terms and average number of rele-
vant documents.

Collection #Docs Topic Set #Topics  |Q| #Rel
MS MARCO Train 502,939 597  1.06

MS MARCO Passage 8,841,823 TREC DL'19 43 540 5816
TREC DL"20 54 6.04 3085

Washington Post 600,000 CARD 45 11 16.76

ized in nature which we detailed in Section 6.5.2. A common practice is to use
the TREC DL topic sets, which contains depth-pooled relevance assessments
on the passages of the MS MARCO collection. For TREC DL, we conduct ex-
periments on a total of 97 queries from the years 2019 and 2020 (Craswell et al.,
2020, 2019). Table 7.1 provides an overview of the dataset used for our selective
feedback experiments.

Since MS MARCO has a dedicated training set, we use a random sample of 5%
of queries (constituting a total of approximately 40K queries) to train the su-
pervised models in our experiments, whereas evaluation is conducted on the
TREC DL (both "19 and "20) query sets. On the other hand, the experiments
on CARD dataset is conducted following the standard k-fold cross validation
where at each step any (k — 1) folds are used for training the model and the re-
maining fold is made use for testing. We repeat this for £ times and report the
average outcome. It is worth mentioning here that for the MS MARCO exper-
iments, we use a small sample from the training set since the training process
requires executing a feedback model (e.g., RLM) for all queries. Therefore, the
model needs to learn a task-specific encoding for each query-document pair,
both for the original and the expanded queries.

To investigate the generalization ability of our selective feedback model on MS
MARCO dataset, we employ RLM as the feedback approach to train the deci-
sion function (Figure 7.3.1). During inference, we employ three different PRF
approaches, namely RLM, ColBERT-PRF (Wang et al., 2023) and GRF (Mackie
et al., 2023) to test the effectiveness of selective feedback. Whereas, to ensure
the robustness of the proposed Deep-SRF in terms of causal retrieval, we make
use of FCRLM (see Chapter 5 for more details) for feedback at the time of
training and both FCRLM and RLM were used at the time of inference for fair

comparisons.
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7.5.2 Parameter Settings

A common parameter for all the methods is the number of top-retrieved doc-
uments £ used for the feedback process and also for training the supervised
PRF decision models. For each method we tune the k € [5, 40] via grid search
on the training folds, and use the optimal value on the test fold. We use the
same approach to tune the parameter o in Equation 7.10, which controls the
importance of the feedback process for the rank-based fusion methods. For the
R2F2-based methods, we conduct a grid search for « in the set {0,0.1,...,1}.
The number of terms used for relevance feedback was tuned for the collection

and we use the optimal value across all the methods considered.

To obtain the initial retrieval list, we use both sparse and dense models. As a
sparse model, we employ BM25 (Robertson et al., 1995) to retrieve the top-1000
results from both MS MARCO and CARD collections. It is worth mentioning
here that while for MS MARCO, the top list is comprised of small passages,
in case of CARD dataset each sentence is considered as a document. A su-
pervised neural model, namely, MonoT5 (Nogueira et al., 2019b) is employed
which operates by re-ranking the top-1000 of BM25. Note that MonoT5 model
was trained only on the MS MARCO training queries.

Both RLM and FCRLM have a shared parameter, that is the number of terms,
T, having the highest weight values, P(w|R), which are used to calculate
the KL divergence for re-ranking in a standard RLM framework (Lavrenko &
Croft, 2001). FCRLM introduces an extra parameter, 7", which represents the
number of top-ranked feedback terms used during the second feedback step.
We choose the value of T"and 7" via a grid search from the set {5,6,7, ..., 20}.

7.6 Results

Main observations. The key results of our experiments are reported in Table
7.2 and 7.3 for MS MARCO and CARD dataset , respectively. We see that the
accuracy level of the decisions is quite satisfactory, even for the unsupervised
threshold-based approaches. The scores also indicate that more accurate PRF

decisions usually lead to an increase in retrieval effectiveness.

From Chapter 5 it is observed that our proposed FCRLM outperforms RLM
significantly (see Table 5.2). Our intuition was that queries those were penal-
ized due to applying feedback blindly (refer to Figure 5.4.6) would likely to
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Table 7.2: Comparison of different SRF approaches on the TREC DL (2019 and 2020)
topic sets with BM25 and MonoT5 set as the initial retrieval models. MAP values
are computed for top-1000 documents. Paired ¢-test (p < 0.05) shows a significant
improvement of Deep-SRF over the best performing baselines (comparing bold-faced
results with the underlined ones).

BM25 (¢: RLM) BM25 (¢: GRF) BM25 (¢: ColBERT-PRF)

Methods Accuracy MAP nDCG@I0 | Accuracy MAP nDCG@IO | Accuracy MAP nDCG@10
No PRF N/A 03766  0.5022 N/A 03766  0.5022 N/A 03766  0.5022
¢ PRF N/A 0.4321 0.5134 N/A 0.4883 0.6226 N/A 0.4514 0.6067
& R2R2 N/A 0.4381 0.5140 N/A 0.5094 0.6332 N/A 0.4968 0.6184
% QPP-SRF 0.7835  0.4400 0.5152 0.7844  0.5321 0.6667 0.7742  0.5238 0.6400
@ TD2F 0.7611 0.4392 0.5135 0.7580  0.4579 0.5900 0.7642  0.4910 0.6038
LR-SRF 0.7842  0.4411 0.5154 0.7784  0.5107 0.6512 0.7854  0.5254 0.6414
Deep-SRF-CNN 04522 05189 0.5466  0.6692 0.5403  0.6578
§ Deep-SRF-CNN-R2F2 07890 04619  0.5246 07944 0.5521  0.6710 08012 0.5495  0.6624
O Deep-SRF-BERT 04705  0.5374 0.5654  0.6821 0.5631  0.6765
Deep-SRF-BERT-R2F2 0-8081 0.4961 0.5486 0-8093 0.5730 0.6839 0.8165 0.5785 0.6873
Oracle 1.0000 05038 05528 | 1.0000 05876  0.6941 | 1.0000 05820  0.6936
MonoTS5 (¢: RLM) MonoT5 (¢: GRF) MonoTS5 (¢: ColBERT-PRF)

Methods Accuracy MAP nDCG@10 ‘ Accuracy MAP nDCG@10 ‘ Accuracy MAP nDCG@10
No PRF N/A 05062  0.6451 N/A 05062  0.6451 N/A 05062  0.6451
$ PRF N/A 05081  0.6463 N/A 05200  0.6487 N/A 05297  0.6491
& R2R2 N/A 0.5112 0.6484 N/A 0.5241 0.6494 N/A 0.5324 0.6502
% QPP-SRF 0.7963  0.5189  0.6559 0.7871 05313  0.6604 0.7900 05419  0.6673
M TD2F 0.7789 05071  0.6453 0.7670  0.4991  0.6403 07612 05179  0.5986
LR-SRF 0.7958  0.5180  0.6543 0.7980  0.5422  0.6628 0.7928  0.5500  0.6654
Deep-SRF-CNN 0.5233 0.6597 0.5478 0.6683 0.5565 0.6693
g Deep-SRF-CNN-R2F2 08012 0.5287 0.6609 0-8011 0.5518 0.6696 0.7967 0.5579 0.6710
O Deep-SRF-BERT 0.5306 0.6640 0.5529 0.6694 0.5624 0.6733
Deep-SRE-BERT-R2E2 08152 05317 06659 | 0810 ose07 06719 | 0807 05711 o.6746
Oracle 1.0000 05416  0.6786 | 1.0000 05722  0.6803 1.0000  0.5801  0.6821

be minimized if feedback were applied selectively, improving retrieval effec-
tiveness further. Comparing ‘RLM’ results from Table 5.2 with ‘PRF’ results
in Table 7.3 confirms the correctness of our initial intuition and the results fur-
ther improve by applying Deep-SRF-BERT. The same can be concluded from
the results obtained for TREC DL topic set in Table 7.2.

Next, we observe that supervised selective PRF approaches yield improved re-
sults over their unsupervised counterparts both for ad-hoc and causal datasets.
Of particular interest is the fact that a data-driven approach outperforms the
feature-based approach, as per our original hypothesis in Section 7.1. Given
the success of Deep-SRF-BERT over Deep-SRF-CNN observed on TREC DL
queries in Table 7.2, we report results only with the data-driven approach,
Deep-SRF-BERT for our causal selective feedback (see Table 7.3). We see that
the results are further improved through a soft combination of the initial and
feedback lists via a confidence-based calibration (Deep-SRE-BERT-R2F2).

An interesting finding is that the SRF decision function trained on RLM on a set

of queries generalizes well not only for a different set of queries (the test set),
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Table 7.3: Comparison of different SRF approaches on the CARD topic sets with
BM25 as the initial retrieval model. Similar to Table 7.2 MAP values are computed for
top-1000 documents. A significant improvement of Deep-SRF over the best perform-
ing baselines (comparing bold-faced results with the underlined ones) are shown via
paired t¢-test (p < 0.05). It is also noticeable that leveraging the top ranked documents
obtained by FCRLM over RLM improves the retrieval effectiveness significantly for
CARD topic sets (shown via paired ¢-test (p < 0.05)) by comparing the numbers in
vertical columns in each group.

BM25 (¢: RLM) BM25 (¢: FCRLM)
Methods Accuracy MAP nDCG@10 ‘ Accuracy MAP nDCG@10
No PRF N/A 02201 02844 N/A 02201 02844
PRF N/A 02487 03011 N/A 02571 03078
Basclines R2F2 N/A 02503  0.3048 N/A 02611 03123
QPP-SRF 06645 02531  0.3072 0.6743 02662 03170
TD2F 06345 02489 03011 0.6402 02586  0.3100
LR-SRF 0.6667 02556  0.3081 0.6781 02691  0.3202
Deep-SRF-BERT 02645 03142 02711 03193
Ours Deep-SRE-BERT-R2F2 06932 02671 03151 07063 02742 03200
Oracle 1.0000 02856  0.3342 1.0000 02930  0.3320

but also across different feedback models as observed both in Table 7.2 and 7.3.
This suggests that the queries which improve with RLM also improve with
other feedback models, such as GRF or ColBERT-PRF. This can be seen from
the GRF and the ColBERT-PRF group of results for both BM25 and MonoT5 in
Table 7.2. This entails that the SRF based decision function does not need to be
trained for specific PRF approaches, which makes it more suitable to use in a
practical setup. The results reported in Table 7.3 also confirm the generalized
nature of our proposed Deep-SRF-BERT in a sense that the decision function
that is trained on FCRLM is capable of improving performance of RLM as well.

We observe that the best results obtained by our method are close to those
achieved by an oracle for MS MARCO; whereas the performance achieved by
CARD dataset shows difference from that of its oracle. This observation again
emphasizes the fact that capturing subtle causal relevance is way more chal-
lenging compared to its topical counterpart. In the ideal oracle scenario, PRF is
applied only if the AP of a query is actually improved (i.e., the oracle uses the
relevance assessments for the test queries). The fact that the results from Deep-
SRF-BERT are close to the oracle suggests that further attempts to increase the
accuracy of PRF decisions may have little impact on retrieval effectiveness,

likely due to saturation effects.

Per-query analysis. To provide further context, Table 7.4 shows examples of
queries both from TREC DL and CARD dataset. Firstly, we see that the average
differences in the AP values before and after feedback are mostly higher for the
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Table 7.4: Contingency tables of the Deep-SRF-BERT model with sample queries
both from TREC DL (top) and CARD (bottom). Here, |Q| is the count of queries for
each of the 4 possible cases of prediction (true/false positives and true/false neg-

atives), and AAP denotes the average AAP values of each cell, where AAP(Q) =
AP(O Q) AP(Q),

Actual
AAP >0 AAP <0
AAP > 0 | What is active margin? Why is Pete Rose banned
- Q] =59 from hall of fame? Q| =8
< Exon definition Biology | AAP = 0.1302 What are best foods to AAP = 0.0525
B lower cholesterol?
E AAP < 0 | Define BMT medical Q| =11 Do Google docs auto save? | |Q| =19
Who is Robert Gray? AAP = 0.0246 How many sons Robert AAP = 0.0737
Kraft has?
Actual
AAP >0 AAP <0
AAP > 0 | Why do some Takata airbags Why does Alfonso Fanjul
- need to be replaced twice? Q| =22 open to investing in Cuba? | |Q| =9
£ Why are more police dogs AAP = 0.1442 | Why is amphetamine use | AAP = 0.0164
5 dying in the line of duty? affecting our waterways?
E AAP <0 | Why is Haiti seeing a surge Why might future medical
in cholera? breakthroughs come from
Q=6 IT industry? Q=38
Why did Lego release AAP = 0.0121 | Why is China projecting AAP = 0.0823
audio braille instructions? military power into the
South China Sea?

green cells, which indicates that the penalty incurred due to queries for which
the model (Deep-SRF-BERT) predicts incorrectly is not too high. This also con-
forms to the fact that at close to 80% accuracy, Deep-SRF-BERT achieves re-
sults close to the oracle. Secondly, a manual inspection of the examples reveals
that the queries for which the Deep-SRF-BERT model correctly decides to ap-
ply PRF appear to be those with under-specified information needs. In other
words, these are queries that would likely benefit from enrichment. An exam-
ple of such a query is ‘what is active margin” or “‘Why do some Takata airbags
need to be replaced twice?” in Table 7 .4.

7.7 Conclusions

Pseudo-relevance feedback (PRF) has the potential to improve average re-
trieval effectiveness across a sufficiently large number of queries. However,
PRF can also lead to a deviation from the original information need, which
may reduce the retrieval effectiveness for certain queries. Additionally, in
the context of searching for causal information, the nuanced nature of cause-

and-effect relationships means that such query drifts result in more significant
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penalties. While a selective application of PRF can potentially alleviate this is-
sue, previous approaches have largely relied on unsupervised or feature-based
learning to determine whether a query should be expanded. We revisited
the problem of selective PRF from a deep learning perspective, presenting a
model that is entirely data-driven and trained in an end-to-end manner. We
introduced two different architectures — one that involves early interaction be-
tween queries and their top-retrieved documents, and another that involves
a late interaction between the query-document encodings obtained via trans-
formers. We also made use of the confidence estimates of our models to effec-
tively combine the information from the original queries and their expanded
versions to further improve retrieval effectiveness. In our experiments, we ap-
plied this selective feedback on a number of different combinations of ranking
and feedback models, demonstrating that our proposed approach consistently
improves retrieval effectiveness for both sparse and dense ranking models,
with the feedback models being either sparse, dense or generative both in ad-

hoc and causal search paradigm.
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CHAPTER

EIGHT

FINAL CONCLUSIONS

In this chapter we revisit the necessity of introducing a new search paradigm
that addresses causal information needs and the corresponding concerns about
a lack of suitable retrieval systems. We re-examine the research challenges that
were identified following a comprehensive literature review and we explore
how the contributions presented in the technical chapters of this thesis make
important strides towards causality-driven search paradigm. We conclude
with a discussion of the limitations of our work, along with an exploration of
several promising avenues for future research in building a more accountable

and effective causal IR landscape.

8.1 Main Contributions

Traditional information retrieval systems are primarily concerned with locat-
ing materials that are topically relevant and descriptive of a certain query term.
In settings like news article collections, users typically search for documents
that not only depict a news event but also delve into the sequence of events
that potentially led to its occurrence. These connections can be complicated,
involving multiple causative elements. We define the problem of causal infor-

mation retrieval as a result of this information need.

In Chapter 2, we presented a full review of numerous significant research gaps
in this field, all of which were subsequently addressed in the technical chapters
of this thesis. We briefly remind the reader of the research gaps that were

originally highlighted in Chapter 1:

¢ Is a typical search system sufficient for detecting causally significant in-

formation, or does a new research paradigm, namely causal information
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retrieval, need to be introduced? (Discussed in detail in Section 1.2.1 and
addressed throughout Chapter 3).

¢ Can we create a system that generates a list of plausible causes, repre-
sented as short text segments, in response to any given causal query
without any supervision? (Discussed in detail in Section 1.2.2 and ad-
dressed throughout Chapter 5).

¢ Can we develop a supervised decision-making pipeline that can deter-
mine when query reformulation is required to capture causal relevance?
(Discussed in detail in Section 1.2.3 and addressed throughout Chapter 6
and 7).

In Chapter 2 we emphasize that while there is a long history of diverse work
in the general area of causality, the existing techniques we identified have only
considered limited forms of causal relations at the sentence or document level
via a comprehensive literature review. In some cases, such as patterns and
contingent discourses, these methods require prior knowledge about causal
events, whereas in others, they require some predefined lexical, syntactic, or
morphological relations. These techniques, however, do not address the nu-
anced causes and effects found in larger document collections, such as those

we target to capture using retrieval models.

The first two technical chapters of this thesis (Chapter 3 and 4) illustrated how
the proposed causal retrieval task differs from standard retrieval problems,

showcasing several notable contributions:

¢ Creating an initial pilot dataset. We created an initial pilot dataset for
the novel causal document retrieval task that enumerates a list of cause

indicative documents in response to an user’s query.

¢ Standard retrieval models are not adequate for causality. A series of rig-
orous experiments were conducted on the pilot dataset to demonstrate
that standard retrieval models do not suffice for causality due to the sub-

tle nature of causally-relevant documents in relation to query events.

* Recursive causal retrieval framework. We proposed a new recursive
causal retrieval framework design that allows for in-depth exploration
of a query to find a chain of likely causes.

* A fine-grained novel causal dataset. We developed a newly annotated,
fine-grained dataset that was created specifically to meet the needs of the
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retrieval framework, namely, identifying precise pieces of information
within causally relevant documents. This has been made available for

other researchers working in the area.

Subsequently, in Chapter 5 we hypothesized that, while there may be some
term overlap between causally relevant documents and those that are topi-
cally relevant for a query, a significant portion of these documents will use a
distinct set of terms to describe various potential causes that could result in
specific effects. In tandem with methodological advances, this chapter also
made contributions in the evaluation of causal IR, which are summarized as

follows:

¢ Unsupervised causal feedback model. We proposed an unsupervised
feedback model for estimating a distribution of terms that are relatively
rare but have high weights in the topically relevant distribution, indicat-

ing potential causal relevance.

¢ Significant improvements in causal information search. We demon-
strated that this feedback model is significantly more effective than tra-
ditional IR models and several other causality heuristic baselines in de-
tailed experiments on both ad-hoc IR datasets and our newly created

causal dataset.

As a further contribution of this thesis, Chapter 7 presented a new supervised
approach for improving retrieval effectiveness in the context of causality. The
fundamental concept is to analyze input queries and predict their performance
relative to the collection (as discussed in Chapter 6). This allows for determin-
ing whether or not to use feedback to capture a larger number of relevant doc-
uments, while minimizing the risk of query drift. The main contributions of

these two chapters can be summarized as:

* CNN-based query performance predictor. We proposed a data-driven
end-to-end convolutional neural framework for predicting query speci-

ficity in ad-hoc retrieval.

* Cross-encoder-based query performance predictor. A novel end-to-end
neural cross-encoder-based approach for estimating the specificity of an
input query was introduced and validated across a number of bench-

mark IR datasets.
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¢ Selective feedback approach. We proposed a new deep-learning frame-
work for the decision-making pipeline based on the data-driven convo-
lutional and cross-encoder-based query estimators that we proposed in
Chapter 6.

* Retrieval effectiveness of selective approach. We showed the model’s
effectiveness in a large number of experiments on standard benchmark

datasets and our newly proposed causal dataset.

Collectively, the three research question outlined in Section 1.2 have been di-
rectly addressed in the technical chapters of this thesis. Consequently, our
work offers significant contributions toward causality-driven ad-hoc informa-
tion retrieval. However, it is important to acknowledge several limitations and

potential avenues for future research, which warrant further discussion.

8.2 Promising Avenues for Future Work

Recursive causal information retrieval. In Chapter 3, we proposed an archi-
tecture for a recursive causal retrieval model that can help users to perform
in-depth exploration in terms of causality pertaining to a news event, and the
chain of causes which led to that event. Since our proposed model is recursive
in nature, the retrieval performance at any current stage influences greatly its
subsequent course of action. Thus, the more we retrieve cause-specific docu-
ments (i.e., document excerpts in our case) in response to the initial effect in the
form of a query, the better the recursive queries that we identify further down
the chain of causes. In contrast, a poor set of initially-retrieved documents
would likely lead to poor results further down the chain. Thus, accurately
pinpointing the first-level causes represents a key challenge in causal retrieval,
a topic we have thoroughly addressed in this thesis.

As future work, we intend to explore ways to construct deeper causal chains
of events in a recursive manner. That is, instead of outputting a ranked list
of documents as potential causes to a given query event, we intend to extract
events from the retrieved articles, treat them as queries in turn, and retrieve
a list of further causes (see Figure 3.3). We would like to create a more fine-
grained dataset for building such a recursive causal pipeline. The dataset we
introduced in Chapter 4 could naturally be extended for this purpose. We
also aim to carry out user studies to explore effective methods for integrating

causally-relevant content within a standard search interface.
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Smarter selective feedback. In Chapter 7, we proposed an adaptive relevance
feedback framework that includes a data-driven supervised neural approach
to optimize retrieval effectiveness by applying feedback on queries in a selec-
tive fashion. By testing this approach using multiple neural architectures and
over different standard test collections, we observed that it performs favor-
ably compared to alternative strategies. Furthermore, it approached the per-
formance of an oracle system, which always perfectly decides whether or not
to apply PRF. We found that different neural architectures exhibited different

trade-offs in terms of computational efficiency and performance.

This work opens the door to interesting future research directions. While we
find our approach to be effective, it does require the execution of PRF to iden-
tify the quality of the results. It may be useful to investigate methods to iden-
tify whether this PRF step is worth executing, thus potentially reducing the
computational cost for queries where PRF is eventually deemed unnecessary.
Further work could also examine strategies for predicting the parameters of

PREF itself, such as the number of relevant documents to include.

Generalized QPP architecture. Chapter 6 proposed a new ‘Pointwise-Query,
Listwise-Document” approach, qppBERT-PL for query performance predic-
tion. We found that the model yields significant relative improvements in QPP
compared to the existing literature. To the best of our knowledge, this is the
first contribution in QPP that transforms the pointwise QPP objective into a

listwise classification task.

As a BERT-based model, qppBERT-PL currently faces limitations due to the
maximum length of a BERT sequence (512 tokens). In the future, we aim to
adapt the model to handle longer documents. This could be achieved by di-
viding a lengthy document into smaller segments and then aggregating the
information from these segments. Additionally, we are keen to investigate
alternative neural architectures and training objectives to reduce the computa-

tion time involved in this listwise-document approach.

8.3 Closing Comments

The field of Causal Information Retrieval has experienced a significant and
dynamic evolution, with researchers striving to decipher complex patterns
within textual content. Existing research on causality has considered relations

either at the sentence level or within a single document. In some cases, these
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methods require prior knowledge about causal events, while in other cases
they necessitate some predefined lexical, syntactic, or morphological relations.
However, these techniques do not cover the nuanced causes and effects in
larger document collections, such as news collections. Motivated by the po-
tential challenges of causal IR and the growing deployment of neural architec-
ture in information retrieval, this thesis has demonstrated the promise of rel-
evance feedback-based models in relation to capturing causal relevance from
the collection. The two primary conclusions of this PhD thesis are: first, the
factored relevance method demonstrates greater efficiency for causality-based
IR compared to standard relevance feedback; and second, selectively applying

feedback to factored relevance further enhances retrieval effectiveness.
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APPENDIX

ONE

IR BACKGROUND AND RELATED
CONCEPTS

A.1 Introduction to Information Retrieval

Information Retrieval (IR) revolves around the science of searching. Classic
examples might include searching a telephone directory for a specific number
or finding the closest hospitals. For much of the 20th century, IR remained rel-
atively unexplored, limited to niche applications like library article searches or
referencing old legal cases. However, with the emergence of the World Wide
Web, the significance of IR has surged, making it essential across numerous
fields and a cornerstone of daily information consumption worldwide. This
section provides a brief introduction to IR, together with an architectural view
of the relevant processes. We will explore essential concepts in IR and the eval-
uation methodologies that are essential for understanding the research pre-
sented in this thesis.

Despite the technological advancements, textual data remains the predomi-
nant medium for storing online information. This thesis focus on textual infor-
mation retrieval, which can be defined as:

Given an information need, and a collection of documents stored
in unstructured textual form, Information Retrieval is the process
of finding documents from that collection which satisfy the infor-

mation need.

Typically the information need will be encoded as a user-specified search
query, while the response of the IR system will take the form of a ranked list of
documents, where the most relevant documents appear at the top of the list.
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In a broad sense, the standard process of IR can be split into two distinct steps:
i) indexing, and ii) retrieval. The initial process of indexing typically involves
processing and storing the collection of documents (often referred to as cor-
pus) in a manner that facilitates the subsequent recall of information. Prior to
indexing, non-informative terms, sometimes referred to as stopwords, are usu-
ally removed and stemming is performed to reduce terms to their root form.
An inverted index is generated from the collection as part of the indexing pro-
cess. This index is comprised of two primary components: the inverted list
(often called a posting list) and the dictionary. The inverted list associates each
term from the vocabulary with a list of documents where that term appears.
On the other hand, the dictionary stores all of the unique terms present in the

vocabulary.

A key consideration for IR revolves around the ability to access information
in a timely manner. For traditional indexing techniques, this is achieved by
storing the dictionary in the primary memory, with pointers to each inverted
list which in turn is stored in the secondary memory. A weight is usually
assigned to each document containing a term that is stored in the inverted
list. These weights are taken into account when ranked retrieval is carried

out. During the process of indexing, the dictionary stores per-term collection

Figure A.1: A conceptual model of indexing for IR.

Document 1
Stopword list Invertedindex
The bright blue 7
butterfly hangs 5 Term-id Term Document
on the breeze. and 1 best 2
around 2 blue 1,3
every .
Document 2 for 3 bright 13
from 4 butterfly 1
il 5 breeze 1
It's best to IS
forget the great it » 6 forget 2
sky and to retire not 7 great 2
from every wind.
on 8 hangs 1
i 9 need 3
the
Document 3 "
to 10 retire 2
e 11 search 3
Under the blue P I — e
sky, in bright 12 sky 2,3
sunlight, one [ 13 wind 2

need not search
around.
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statistics which ensures that all essential information needed to compute the
retrieval score for a document is extracted in one single lookup operation. An
example illustrating the process of indexing is presented in Figure A.1 for a

corpus of three documents.

A.2 Baseline Retrieval Models

Search engines rely on specific algorithms, often called retrieval models or re-
trieval functions, to find relevant content in response to an input query. Several
of these models have proven to be highly efficient. In this thesis, we imple-
ment language model-based retrieval methods that are dependent on smooth-
ing techniques, notably on smoothing techniques, such as Jelinek-Mercer and
Dirichlet (Zhai, 2008; Zhai & Lafferty, 2001). The relevance of these strategies
lie in the fact that they are frequently used as baseline retrieval methods (e.g.
Zamani & Croft, 2016, 2017; Zheng & Callan, 2015; Guo et al., 2016; Paik, 2015).
Considerable research in this area has also involved the use of probabilis-
tic and information theoretic methods, including BM25 (Robertson & Walker,
1994; Robertson & Zaragoza, 2009) and measuring divergence from random-
ness (Amati & Van Rijsbergen, 2002). The next subsection describes key tech-
niques, such as relevance feedback and relevance-based language models — a
leading state-of-the-art query expansion (QE) technique using relevance feed-
back. These serve as baselines for several experiments conducted later in this

thesis.

A.21 Language Modeling

Here, we introduce the underlying concept of the language model-based re-
trieval pipeline. Consider a query (), a document d, and a language model D
estimated from d. The posterior probability P(D|Q) gives the document score
with respect to () in decreasing order. The estimate of P(D|Q) is obtained for
d when the collection is being indexed with the aid of prior probability P(Q|d)
as per Bayes rule (Ponte & Croft, 1998; Zhai & Lafferty, 2001):

p(QD.p(D))

p(dlQ) = ~ o p(QID).p(D) = p(D). [ [ r(a|D)
> awecc QD) 7€0 (A1)
« [ pa/D)
qeQ
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Let V' denote the corpus vocabulary size and p(w;|d) denote the probability
of randomly picking a word w; from d. Then a unigram language model,
D = {p(w;|d)}icp, v, represents an approximation of the language model D
associated with d. Following this, the retrieval score of d for query ) can be

defined as:
Score(Q, d) = p(Q|D)

~ T »tald) (A2)

q€Q

Jelinek-Mercer smoothing. From Equation (A.2), it is evident that a missing
query term from d would result in a score of 0. This necessitates addressing
the zero probability issue in the language mode D. A common solution in-
volves computing the Maximum Likelihood Estimate (MLE) of p(w;|d) for a
background language model for the entire collection, C' and interpolating the
same. Formally, this is given by:

p(QID) = [[P(ald) + (1 = Np(q|C)]

q€eQ

tf(g,d) cf(q) (A.3)
S | (DA LA
LG+ =075

where tf(q,d) and c¢f(q) denote the number of times ¢ occur in d and in C
respectively, |d| and |C| indicate the size of document d and collection C' re-
spectively, and A = [0, 1] is the interpolation parameter. The method described
by Equation (A.3) is often termed as the language model with Jelinek-Mercer
smoothing or linear smoothing, abbreviated as LM-JM throughout this thesis.

Dirichlet smoothing. Another widely-used method is Dirichlet smoothing,
which relies on Bayesian estimation, in contrast to MLE in LM-JM. The model
is similar to the one presented in Equation (A.3), with the key difference being
in the interpolation parameter with a dynamic coefficient dependent on the
length of the document. This is given by

tf(q,d) + up(q|C|)
|d] + p

P@ID) =]

q€Q

(A.4)

where tf(q,d) is the term frequency of ¢ in d, and p(Q|C) is the probability
of occurrence of ¢ in C. The interpolation parameter ;. can be interpreted as
the pseudo count of words obtained through prior probabilities. Typically, the
value of y is set within the range [100, 5000]. The approach presented in Equa-

tion (A.4) is commonly referred to as language model with Dirichlet smooth-
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ing, abbreviated as LM-Dir henceforth.

A.2.2 BM25

BM-25 is a probabilistic-based function used in traditional information re-
trieval systems to rank documents based on their relevance to a given query,
which offers better length normalization factors (Robertson & Walker, 1994;
Robertson & Zaragoza, 2009). Here, the retrieval score of a document d with

respect to its query ¢ is computed as

Score(Q, d) = 3 log D df )+05 /(g d)k+1) (A.5)

P +05 tf(q,d) + k1 (1= b+ b21%)

avgdl

where D denotes the number of documents in the collection, df (¢) denotes the
number of documents in the collection containing the term ¢, ¢ f(q, d) denotes
the number of occurrences of ¢ in d, avgdl is the average document length of
collection, and b is a length normalization parameter. The tuning parameter k;

is designed to calibrate document term frequency scaling.

A.3 Word Embeddings

The idea that terms can be represented as vectors in a multi-dimensional space
has been in existence for quite sometime (Collobert et al., 2011; Tredici & Bel,
2015; Gharbieh et al., 2016; Joshi et al., 2016; Salehi et al., 2015). However, when
(Mikolov et al., 2013) first introduced the word2vec algorithm, it popularized
thee use of word embedding in natural language processing. This technique
and its counterparts, such as GloVe (Pennington et al., 2014), rely on using vec-
tors to represent words in an abstract dimensional space through which the

semantic similarity between two constituent terms of a document is studied.

Word embeddings can capture linguistic patterns such conceptual combina-
tion and laws of analogy through basic algebraic operations on their vectors.
A number of useful characteristics of word embeddings are listed below:

1. An approximation of the semantic similarity between two words can be

provided by the cosine similarity between their respective vectors.

2. A simple addition of the embedded vectors can be useful in capturing
the effect of conceptual composition. For instance, vec(‘Bann’) might
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Figure A.2: A graphical illustration of of the continuous bag-of-words (left) and the
skip-gram (right) models of word2vec.
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be a close approximation of the resultant vector obtained by adding
vec(‘Ireland’) and vec(‘river’).

3. Laws of analogy are obeyed by the embedded vectors. For example, the
operation vec(’Paris’) - vec(‘France’) + vec(‘Italy’) yields an approximate
representation of vec(‘Rome’).

4. Embedded vectors can serve as features for various supervised text pro-
cessing tasks such as document classification, named entity recognition,
and sentiment analysis, with their inherent semantic information making

them useful when performing these tasks.

Semantic distances between terms, used to deduce the similarity function, play
a key role when ranking documents, making the first characteristic above cru-
cial in our own work.

The Skip-gram and Continuous Bag-of-Words (CBOW) are the two word2vec
models employed to build word embeddings. A single hidden layer neural
network is used by both of these models. The key difference is that CBOW
predicts a word from its context, whereas Skip-gram predicts the context from
a given word. Figure A.2 provides a visual representation of these models.

Negative sampling is the key algorithm which is used to train the neural net-
work in word2vec. For every word, a positive evidence set D is established

consisting of different words in a particular context. In a similar manner, a
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negative evidence set D’ outside of the word is also defined. The probability
that a word, w. is present in the context of a set of words w; for a given ordered

pair (w;, w.) can be written as:

arg mazgy H P(Dy, ., = wy, we) H P(Dy,w, = 0lw, we.)  (A6)

(we,we)€l (we,we) €D

Maximizing the probability of sampling w, from its context D and at the same
time minimizing the same from outside the context i.e. D’ is the primary pur-
pose of the objective function for training the RNN. When vector representa-

tion of words are used, the optimization function may be represented by

arg mazg Z log 0 (v, -V, ) — Z log 0 (v, -V, ) (A.7)

(wt,we)€D (we,we) €D

where v(w) denotes the embedded representation of the word w and the sig-

moid function is calculated as o(z) = £ +i_$. The inner product of vectors for

w; with respect to w, is maximized by using Equation (A.7), ensuring a higher

level of similarity for these vectors, while simultaneously reducing the simi-

larity with respect to the vectors outside of the context.

A.4 Evaluation Methodology

A.4.1 Retrieval Evaluation Metrics

We now discuss the various metrics used to compare the performance of dif-
ferent retrieval methods in the experiments in this thesis. For a required set of
information, let us assume a set of queries Q. Let Relg denote the total num-
ber of documents relevant to {Q) : ) € Q} present in the collection. A ranked
list L = {di,ds,...,d,} contains a set of n documents retrieved by applying a
function F. These documents are ordered based on their retrieval scores, such
that {score(d;, Q) > score(d;, Q) Vi < j}.

Mean Average Precision (MAP). Mean Average Precision (MAP) evaluates the
retrieval quality of a model across recall levels by yielding a single-figure mea-
sure. Amongst other retrieval evaluation metrics, a satisfactory discriminative
property with significant stability is exhibited by MAP (Manning et al., 2008).
in the top K retrieved documents For each relevant document retrieved in the

top k documents, the average precision is indicative of the mean of the precision
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values for a given information need. Formally, each document is ranked de-
pending on the position at which it is retrieved, i.e. Rank(d;) = i,i € N. The

average precision (AP) for query () is then defined as

1 m
AP(Q) = - A8
(@) Relg] dmeRgRetQ Rank(d,,) (A.8)

where RelRetg = {d,ds, ...,d} is the set of m relevant documents retrieved
among the documents of Retg(Retg C RelRet), such that n > m. Thus, the
overall MAP score of Q is given by:

1

MAP(Q) = Ql

> _AP@Q) (A.9)

QeQ

This metric is usually calculated on the top n documents, where n is generally
set to 1000.

Precision at Rank & (P@Qk). In the ranked list of documents L, let Relevant(Ly,)
be the total number of relevant documents up to the rank £. The precision at
depth £ is therefore given by:

Relevant(Ly,)

Pak =
k

(A.10)

For a given topic set Q, averaging PQfk for all the queries gives the value of
PQF in a way similar to MAP. To evaluate the rank at depth 5, k is set to 5 in
this thesis.

Recall at Rank % (Recall@k). We define the recall at depth £ for a query () as:

Relevant(Ly)

QL =
Recall@ Relg

(A.11)
The recall at rank % is computed by averaging the individual recall values over
all the queries for the entire topic set Q. The value of k is set to 1000 for the
experiments presented in this thesis.

Mean Reciprocal Rank (MRR). This metric is used to assess systems that re-
trieve a ranked list of responses to input queries. Reciprocal rank is the mul-
tiplicative inverse of the rank of the first correct answer, i.e., 1 for first, 1/2 for
second, 1/3 for third, and so on. If there is no document retrieved, the recipro-
cal rank is 0. The average reciprocal rank is the sum of the reciprocal ranks of
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results for a query set Q, which can be expressed as:

MRR = 1 S 1 A.12
(@)—@;m (A.12)

Normalized Discounted Cumulative Gain at Rank £ (nDCG@k). The dis-
counted cumulative gain (DCG) for k retrieved relevant documents sums the
relevance of these documents in relation to the current query (cumulative),
while also including a penalty for relevant documents placed later in the
ranked list (discounted). Therefore, DCG can be calculated as

DCG = — .
ca ; log,(i + 1) (A-13)

where Gain; is the relevance score of the i*" retrieved document.

Normalized discounted cumulative gain (nDCG) normalizes the DCG score
with respect to the ideal discounted cumulative gain (IDCG), which represents
the DCG of the ideal ranking. Thus, nDCG can be expressed as

k(actual order) Gain,
DCGQk D i Tog, (i41)
nDCGQk = IDCGQL - Zk(ideal order) Gain; (A14)
=1 log, (i+1)

which yields values € [0, 1], with higher values indicating better performance.

A.4.2 QPP Evaluation Metrics

Pearson’s Correlation Coefficient (P — r) is used to assess the strength of a
linear relationship between two variables z and y. A value of r = 1 indicates a
perfect positive correlation, while » = —1 indicates a perfect negative correla-

tion. We compute r as

o Y —3).(5i—7)
YV @ 2P (i — 9)?

where 7 and y denote the sample mean of x and y, respectively.

(A.15)

Kendall’s Correlation Coefficient (K — 7) quantifies the similarity of two
ranked transformed data orderings x and y. Its output can be interpreted as
the probability such that, as = increases, y increases, re-scaled from -1 to 1.
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Formally we define

2
Tay = ———— Y _ sgn(z; — ;).59n(y; — y;) (A.16)

n(n —1) =

where n denotes the number of pairs and sgn() is the standard sign function.
Note that the equation above is only applicable in cases where there are no ties
in the sample data.
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